1.把三個(gè)csv文件中的feature值整合到一個(gè)文件中,同時(shí)添加相應(yīng)的label。
# -*-coding:utf-8 -*-
import csv;
label1 = '1'
label2 = '2'
label3 = '3'
a = "feature1,feature2,feature3,feature4,feature5,feature6,feature7,feature8,feature9,feature10,label" + "\n"
with open("./dataset/dataTime2.csv", 'a') as rfile:
rfile.writelines(a)
with open("./dataset/f02.csv", 'rb') as file:
a = file.readline().strip()
while a:
a = a + ',' + label1 + "\n"
#a = label1 + ',' + a + "\n"
with open("./dataset/dataTime2.csv", 'a') as rfile:
rfile.writelines(a)
a = file.readline().strip()
with open("./dataset/g03.csv", 'rb') as file:
a = file.readline().strip()
while a:
a = a + ',' + label2 + "\n"
#a = label2 + ',' + a + "\n"
with open("./dataset/dataTime2.csv", 'a') as rfile:
rfile.writelines(a)
a = file.readline().strip()
with open("./dataset/normal05.csv", 'rb') as file:
a = file.readline().strip()
while a:
a = a + ',' + label3 + "\n"
#a = label3 + ',' + a + "\n"
with open("./dataset/dataTime2.csv", 'a') as rfile:
rfile.writelines(a)
a = file.readline().strip()
?
2.獲取csv文件中某一列,下面可以獲得label為表頭的列中對(duì)應(yīng)的所有數(shù)值。
filename = "./dataset/dataTime2.csv"
list1 = []
with open(filename, 'r') as file:
reader = csv.DictReader(file)
column = [row['label'] for row in reader]
?文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-540044.html
3.獲取csv文件中某些列,下面可以獲得除label表頭的對(duì)應(yīng)列之外所有數(shù)值。
import pandas as pd
odata = pd.read_csv(filename)
y = odata['label']
x = odata.drop(['label'], axis=1) #除去label列之外的所有feature值
4.也可以處理成list[np.array]形式的數(shù)據(jù)。
filename = "./dataset/dataTime2.csv"
list1 = []
with open(filename, 'r') as file:
a = file.readline()
while a:
c = np.array(a.strip("\n").split(","))
list1.append(c)
5.也可以處理成tensor格式數(shù)據(jù)集
# -*-coding:utf-8 -*-
import tensorflow as tf
# 讀取的時(shí)候需要跳過(guò)第一行
filename = tf.train.string_input_producer(["./dataset/dataTime.csv"])
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename)
record_defaults = [[1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], [1.], tf.constant([], dtype=tf.int32)]
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11= tf.decode_csv(
value, record_defaults=record_defaults)
features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8, col9, col10])
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
trainx = []
trainy = []
for i in range(81000):
# Retrieve a single instance:
example, label = sess.run([features, col11])
trainx.append(example)
trainy.append(label)
coord.request_stop()
coord.join(threads)
#最后長(zhǎng)度是81000,trainx是10個(gè)特征
參考資料:http://t.csdn.cn/HFTPy文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-540044.html
到了這里,關(guān)于用python獲取.csv文件中某一列或者某些列的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!