記錄一下今天參考別人的代碼實現(xiàn)了四個電機的測速。
?
編碼器被廣泛應用于電機測速,實現(xiàn)電機閉環(huán)控制。所以不論是自己做小車還是后續(xù)參加各種比賽,必須要學會編碼器測速。
一.參數(shù)? ? ?
????????編碼電機其實就是一個帶有編碼器的電機,我的這個電機是一個帶霍爾傳感器的電機,型號是JGB37-520,然后我的電機減速比是30(一定要記住,買的時候也要看清電機減速比是多少,涉及到轉速的計算),額定電壓12V,然后就是編碼器的參數(shù)了,見下圖
電機驅動模塊我用的TB6612的四路的板子,就是下面這款,很好用,就是稍微有點貴。
二.常用測速方法
主要分為M法、T法和M/T法,詳情見這篇文章STM32 CubeMax 編碼器電機測速 原理與實現(xiàn)
?三.CubeMX配置
首先是配置PWM輸出定時器,我這里使用的是TIM8
然后再配置編碼器輸入定時器TIM2,TIM3\TIM4\TIM5按照相同的參數(shù)配置
這里開啟了兩個通道計數(shù),就是倍頻技術的4倍頻
編碼器模式下的定時器其實是個計數(shù)器,在編碼器的脈沖到來時,Counter會相應地加和減,正轉時加,反轉時減,溢出后到達另一個極端值,比如說向上計數(shù)到達20001時會變成0
再設置每隔10ms讀取定時器的值的定時器TIM6
?最后注意中斷優(yōu)先級TIM6要小于編碼器計數(shù)的定時器。
?四.代碼
?encoder.c
#include "encoder.h"
Motor motor1;
Motor motor2;
Motor motor3;
Motor motor4;
int t1,t2,t3,t4,j1,j2,j3,j4;
void Motor_Init(void)
{
HAL_TIM_Encoder_Start(&ENCODER_TIM1, TIM_CHANNEL_ALL); //開啟編碼器定時器
HAL_TIM_Encoder_Start(&ENCODER_TIM2, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&ENCODER_TIM3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&ENCODER_TIM4, TIM_CHANNEL_ALL);
__HAL_TIM_ENABLE_IT(&ENCODER_TIM1,TIM_IT_UPDATE); //開啟編碼器定時器更新中斷,防溢出處理
__HAL_TIM_ENABLE_IT(&ENCODER_TIM2,TIM_IT_UPDATE);
__HAL_TIM_ENABLE_IT(&ENCODER_TIM3,TIM_IT_UPDATE);
__HAL_TIM_ENABLE_IT(&ENCODER_TIM4,TIM_IT_UPDATE);
HAL_TIM_Base_Start_IT(&GAP_TIM); //開啟10ms定時器中斷
__HAL_TIM_SET_COUNTER(&ENCODER_TIM1, 10000); //編碼器定時器初始值設定為10000
__HAL_TIM_SET_COUNTER(&ENCODER_TIM2, 10000);
__HAL_TIM_SET_COUNTER(&ENCODER_TIM3, 10000);
__HAL_TIM_SET_COUNTER(&ENCODER_TIM4, 10000);
motor1.lastCount = 0; //結構體內容初始化
motor1.totalCount = 0;
motor1.overflowNum = 0;
motor1.speed = 0;
motor1.direct = 0;
motor2.lastCount = 0; //結構體內容初始化
motor2.totalCount = 0;
motor2.overflowNum = 0;
motor2.speed = 0;
motor2.direct = 0;
motor3.lastCount = 0; //結構體內容初始化
motor3.totalCount = 0;
motor3.overflowNum = 0;
motor3.speed = 0;
motor3.direct = 0;
motor4.lastCount = 0; //結構體內容初始化
motor4.totalCount = 0;
motor4.overflowNum = 0;
motor4.speed = 0;
motor4.direct = 0;
}
//M法測速度
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)//定時器回調函數(shù),用于計算速度
{
if(htim->Instance==ENCODER_TIM1.Instance)//編碼器輸入定時器溢出中斷
{
if(COUNTERNUM1 < 10000) motor1.overflowNum++; //如果是向上溢出
else if(COUNTERNUM1 >= 10000) motor1.overflowNum--; //如果是向下溢出
__HAL_TIM_SetCounter(&ENCODER_TIM1, 10000); //重新設定初始值
if(COUNTERNUM2 < 10000) motor2.overflowNum++; //如果是向上溢出
else if(COUNTERNUM2 >= 10000) motor2.overflowNum--; //如果是向下溢出
__HAL_TIM_SetCounter(&ENCODER_TIM2, 10000); //重新設定初始值
if(COUNTERNUM3 < 10000) motor3.overflowNum++; //如果是向上溢出
else if(COUNTERNUM3 >= 10000) motor3.overflowNum--; //如果是向下溢出
__HAL_TIM_SetCounter(&ENCODER_TIM3, 10000); //重新設定初始值
if(COUNTERNUM4 < 10000) motor4.overflowNum++; //如果是向上溢出
else if(COUNTERNUM4 >= 10000) motor4.overflowNum--; //如果是向下溢出
__HAL_TIM_SetCounter(&ENCODER_TIM4, 10000); //重新設定初始值
}
else if(htim->Instance==GAP_TIM.Instance)//間隔定時器中斷,是時候計算速度了
{
motor1.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM1);//如果向上計數(shù)(正轉),返回值為0,否則返回值為1
motor1.totalCount = COUNTERNUM1 + motor1.overflowNum * RELOADVALUE1;//一個周期內的總計數(shù)值等于目前計數(shù)值加上溢出的計數(shù)值
motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少轉
if(motor1.direct==0)
{
t1=motor1.speed/1;
j1=(motor1.speed-t1)*10000;
}
else
{
t1=-motor1.speed/1;
j1=-(motor1.speed+t1)*10000;
}
//motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得車輪線速度每秒多少毫米
motor1.lastCount = motor1.totalCount; //記錄這一次的計數(shù)值
motor2.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM2);//如果向上計數(shù)(正轉),返回值為0,否則返回值為1
motor2.totalCount = COUNTERNUM2 + motor1.overflowNum * RELOADVALUE2;//一個周期內的總計數(shù)值等于目前計數(shù)值加上溢出的計數(shù)值
motor2.speed = (float)(motor2.totalCount - motor2.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少轉
if(motor2.direct==0)
{
t2=motor2.speed/1;
j2=(motor2.speed-t2)*10000;
}
else
{
t2=-motor2.speed/1;
j2=-(motor2.speed+t2)*10000;
}
//motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得車輪線速度每秒多少毫米
motor2.lastCount = motor2.totalCount; //記錄這一次的計數(shù)值
motor3.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM3);//如果向上計數(shù)(正轉),返回值為0,否則返回值為1
motor3.totalCount = COUNTERNUM3 + motor3.overflowNum * RELOADVALUE3;//一個周期內的總計數(shù)值等于目前計數(shù)值加上溢出的計數(shù)值
motor3.speed = (float)(motor3.totalCount - motor3.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少轉
if(motor3.direct==0)
{
t3=motor3.speed/1;
j3=(motor3.speed-t3)*10000;
}
else
{
t3=-motor3.speed/1;
j3=-(motor3.speed+t3)*10000;
}
//motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得車輪線速度每秒多少毫米
motor3.lastCount = motor3.totalCount; //記錄這一次的計數(shù)值
motor4.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM4);//如果向上計數(shù)(正轉),返回值為0,否則返回值為1
motor4.totalCount = COUNTERNUM4 + motor4.overflowNum * RELOADVALUE4;//一個周期內的總計數(shù)值等于目前計數(shù)值加上溢出的計數(shù)值
motor4.speed = (float)(motor4.totalCount - motor4.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少轉
if(motor4.direct==0)
{
t4=motor4.speed/1;
j4=(motor4.speed-t4)*10000;
}
else
{
t4=-motor4.speed/1;
j4=-(motor4.speed+t4)*10000;
}
//motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得車輪線速度每秒多少毫米
motor4.lastCount = motor4.totalCount; //記錄這一次的計數(shù)值
}
}
??encoder.h
#ifndef _ENCODER_H_
#define _ENCODER_H_
#include "stm32f1xx.h"
#include "tim.h"
//定時器號
#define ENCODER_TIM1 htim2
#define ENCODER_TIM2 htim3
#define ENCODER_TIM3 htim4
#define ENCODER_TIM4 htim5
#define GAP_TIM htim6
#define MOTOR_SPEED_RERATIO 30u //電機減速比
#define PULSE_PRE_ROUND 11 //一圈多少個脈沖
#define RADIUS_OF_TYRE 40 //輪胎半徑,單位毫米
#define LINE_SPEED_C RADIUS_OF_TYRE * 2 * 3.14
#define RELOADVALUE1 __HAL_TIM_GetAutoreload(&ENCODER_TIM1) //獲取自動裝載值,本例中為20000
#define COUNTERNUM1 __HAL_TIM_GetCounter(&ENCODER_TIM1) //獲取編碼器定時器中的計數(shù)值
#define RELOADVALUE2 __HAL_TIM_GetAutoreload(&ENCODER_TIM2)
#define COUNTERNUM2 __HAL_TIM_GetCounter(&ENCODER_TIM2)
#define RELOADVALUE3 __HAL_TIM_GetAutoreload(&ENCODER_TIM3)
#define COUNTERNUM3 __HAL_TIM_GetCounter(&ENCODER_TIM3)
#define RELOADVALUE4 __HAL_TIM_GetAutoreload(&ENCODER_TIM4)
#define COUNTERNUM4 __HAL_TIM_GetCounter(&ENCODER_TIM4)
typedef struct _Motor
{
int32_t lastCount; //上一次計數(shù)值
int32_t totalCount; //總計數(shù)值
int16_t overflowNum; //溢出次數(shù)
float speed; //電機轉速
uint8_t direct; //旋轉方向
}Motor;
extern int t1,t2,t3,t4,j1,j2,j3,j4;
void Motor_Init(void);
void HAL_TIM_PeriodElapsedCallback1(TIM_HandleTypeDef *htim);
#endif
main.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "bluetooth.h"
#include "Control.h"
#include "oled.h"
#include "encoder.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM8_Init();
MX_USART1_UART_Init();
MX_I2C2_Init();
MX_TIM2_Init();
MX_TIM6_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_TIM5_Init();
/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart1,(uint8_t *)&USART1_NewData,1);
/* USER CODE END 2 */
OLED_Init();
OLED_CLS();
OLED_ShowChar(14,1,'.',15);
OLED_ShowChar(14,2,'.',15);
OLED_ShowChar(14,3,'.',15);
OLED_ShowChar(14,4,'.',15);
OLED_ShowStr(50,5,"By Whelve",2);
OLED_ShowStr(60,1,"r/s",1);
OLED_ShowStr(60,2,"r/s",1);
OLED_ShowStr(60,3,"r/s",1);
OLED_ShowStr(60,4,"r/s",1);
Motor_Init();
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
Control();
OLED_ShowNum(0,1,t1,2,15);
OLED_ShowNum(18,1,j1,5,15);
OLED_ShowNum(0,2,t2,2,15);
OLED_ShowNum(18,2,j2,5,15);
OLED_ShowNum(0,3,t3,2,15);
OLED_ShowNum(18,3,j3,5,15);
OLED_ShowNum(0,4,t4,2,15);
OLED_ShowNum(18,4,j4,5,15);
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
?代碼部分參考自STM32 CubeMax 編碼器電機測速 原理與實現(xiàn)
?文章來源:http://www.zghlxwxcb.cn/news/detail-539328.html
最后效果不錯?文章來源地址http://www.zghlxwxcb.cn/news/detail-539328.html
到了這里,關于stm32編碼器電機測速(hal庫)的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!