一、拉格朗日松弛
當(dāng)遇到一些很難求解的模型,但又不需要去求解它的精確解,只需要給出一個(gè)次優(yōu)解或者解的上下界,這時(shí)便可以考慮采用松弛模型的方法加以求解。
對于一個(gè)整數(shù)規(guī)劃問題,拉格朗日松弛放松模型中的部分約束。這些被松弛的約束并不是被完全去掉,而是利用拉格朗日乘子在目標(biāo)函數(shù)上增加相應(yīng)的懲罰項(xiàng),對不滿足這些約束條件的解進(jìn)行懲罰。
拉格朗日松弛之所以受關(guān)注,是因?yàn)樵诖笠?guī)模的組合優(yōu)化問題中,若能在原問題中減少一些造成問題“難”的約束,則可使問題求解難度大大降低,有時(shí)甚至可以得到比線性松弛更好的上下界。
二、次梯度算法
由于拉格朗日對偶問題通常是分段線性的,這會導(dǎo)致其在某些段上不可導(dǎo),所以沒法使用常規(guī)的梯度下降法處理。于是引入次梯度(Subgradient)用于解決此類目標(biāo)函數(shù)并不總是處處可導(dǎo)的問題。
次梯度算法的優(yōu)勢是比傳統(tǒng)方法能夠處理的問題范圍更大,不足之處就是算法收斂速度慢。
三、案例實(shí)戰(zhàn)
松弛之后的目標(biāo)函數(shù)為
m a x : z = 16 x 1 + 10 x 2 + 4 x 4 + μ [ 10 ? ( 8 x 1 + 2 x 2 + x 3 + 4 x 4 ) ] max :z=16x_1+10x_2+4x_4+\mu[10-(8x_1+2x_2+x_3+4x_4)] max:z=16x1?+10x2?+4x4?+μ[10?(8x1?+2x2?+x3?+4x4?)]
化簡為
m a x : z = ( 16 ? 8 μ ) x 1 + ( 10 ? 2 μ ) x 2 + ( ? μ ) x 3 + ( 4 ? 4 μ ) x 4 + 10 μ max :z=(16-8\mu)x_1+(10-2\mu)x_2+(-\mu)x_3+(4-4\mu)x_4+10\mu max:z=(16?8μ)x1?+(10?2μ)x2?+(?μ)x3?+(4?4μ)x4?+10μ
由于每一次迭代時(shí) μ \mu μ 是一個(gè)確定的常數(shù),所以目標(biāo)函數(shù)中的 10 μ 10\mu 10μ 可以在建模時(shí)省略
具體求解代碼如下:
import ilog.concert.IloException;
import ilog.concert.IloIntVar;
import ilog.concert.IloLinearNumExpr;
import ilog.cplex.IloCplex;
import java.util.Arrays;
public class TestLR {
// lambda
static double lambda = 2d;
// 最大迭代次數(shù)
static int epochs = 100;
// 上界最大未更新次數(shù)
static int ubMaxNonImproveCnt = 3;
// 最小步長
static double minStep = 0.001;
// 松弛問題模型
static IloCplex relaxProblemModel;
// 變量數(shù)組
static IloIntVar[] intVars;
// 最佳上下界
static double bestLB = 0d;
static double bestUB = 1e10;
// 最佳拉格朗日乘數(shù)
static double bestMu = 0d;
// 最佳解
static double[] bestX;
// 運(yùn)行主函數(shù)
public static void run() throws IloException {
//
double mu = 0d;
double step = 1d;
int ubNonImproveCnt = 0;
// 初始化松弛問題模型
initRelaxModel();
// 開始迭代
for (int epoch = 0; epoch < epochs; epoch++) {
System.out.println("----------------------------- Epoch-" + (epoch + 1) + " -----------------------------");
System.out.println("mu: " + mu);
System.out.println("lambda: " + lambda);
// 根據(jù)mu,設(shè)置松弛問題模型目標(biāo)函數(shù)
setRelaxModelObjectiveBuMu(mu);
if (relaxProblemModel.solve()) {
// 獲得當(dāng)前上界(由于建模時(shí)沒有考慮常數(shù) 10*mu,所以這里要加回來,得到松弛問題的真正目標(biāo)值)
double curUB = relaxProblemModel.getObjValue() + 10 * mu;
// 更新上界
if (curUB < bestUB) {
bestUB = curUB;
ubNonImproveCnt = 0;
} else {
ubNonImproveCnt++;
}
System.out.println("curUB: " + curUB);
// 獲取變量值
double[] x = relaxProblemModel.getValues(intVars);
// 計(jì)算次梯度
double subGradient = (8 * x[0] + 2 * x[1] + x[2] + 4 * x[3]) - 10;
double dist = Math.pow(subGradient, 2);
// 迭迭代停止條件1
if (dist <= 0.0) {
System.out.println("Early stop: dist (" + dist + ") <= 0 !");
break;
}
// 如果次梯度大于等于0,說明滿足被松弛的約束,即可以作為原問題的可行解
if (subGradient <= 0) {
// 計(jì)算當(dāng)前原問題的解值
double obj = 16 * x[0] + 10 * x[1] + 4 * x[3];
if (obj > bestLB) {
// 更新下界
bestLB = obj;
bestMu = mu;
bestX = x.clone();
}
}
System.out.println("subGradient: " + subGradient);
System.out.println("bestUB: " + bestUB);
System.out.println("bestLB: " + bestLB);
System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");
// 迭代停止條件2
if (bestLB >= bestUB - 1e-06) {
System.out.println("Early stop: bestLB (" + bestLB + ") >= bestUB (" + bestUB + ") !");
break;
}
// 上界未更新達(dá)到一定次數(shù)
if (ubNonImproveCnt >= ubMaxNonImproveCnt) {
lambda /= 2;
ubNonImproveCnt = 0;
}
// 更新拉格朗日乘數(shù)
mu = Math.max(0, mu + step * subGradient);
// 更新步長
step = lambda * (curUB - bestLB) / dist;
// 迭代停止條件3
if (step < minStep) {
System.out.println("Early stop: step (" + step + ") is less than minStep (" + minStep + ") !");
break;
}
} else {
System.err.println("Lagrange relaxation problem has no solution!");
}
}
}
// 建立松弛問題模型
private static void initRelaxModel() throws IloException {
relaxProblemModel = new IloCplex();
relaxProblemModel.setOut(null);
// 聲明4個(gè)整數(shù)變量
intVars = relaxProblemModel.intVarArray(4, 0, 1);
// 添加約束
// 約束1:x1+x2<=1
relaxProblemModel.addLe(relaxProblemModel.sum(intVars[0], intVars[1]), 1);
// 約束2:x3+x4<=1
relaxProblemModel.addLe(relaxProblemModel.sum(intVars[2], intVars[3]), 1);
}
// 根據(jù)mu,設(shè)置松弛問題模型的目標(biāo)函數(shù)
private static void setRelaxModelObjectiveBuMu(double mu) throws IloException {
// 目標(biāo)函數(shù)(省略了常數(shù) 10*mu)
IloLinearNumExpr target = relaxProblemModel.linearNumExpr();
target.addTerm(16 - 8 * mu, intVars[0]);
target.addTerm(10 - 2 * mu, intVars[1]);
target.addTerm(0 - mu, intVars[2]);
target.addTerm(4 - 4 * mu, intVars[3]);
if (relaxProblemModel.getObjective() == null) {
relaxProblemModel.addMaximize(target);
} else {
relaxProblemModel.getObjective().setExpr(target);
}
}
public static void main(String[] args) throws IloException {
long s = System.currentTimeMillis();
run();
System.out.println("----------------------------- Solution -----------------------------");
System.out.println("bestMu: " + bestMu);
System.out.println("bestUB: " + bestUB);
System.out.println("bestLB: " + bestLB);
System.out.println("gap: " + String.format("%.2f", (bestUB - bestLB) * 100d / bestUB) + " %");
System.out.println("bestX: " + Arrays.toString(bestX));
System.out.println("Solve Time: " + (System.currentTimeMillis() - s) + " ms");
}
}
程序輸出:
----------------------------- Epoch-1 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 0.0
gap: 100.00 %
----------------------------- Epoch-2 -----------------------------
mu: 2.0
lambda: 2.0
curUB: 26.0
subGradient: -8.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-3 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 20.0
bestLB: 10.0
gap: 50.00 %
----------------------------- Epoch-4 -----------------------------
mu: 1.0
lambda: 2.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-5 -----------------------------
mu: 11.0
lambda: 2.0
curUB: 110.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-6 -----------------------------
mu: 0.0
lambda: 2.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-7 -----------------------------
mu: 4.0
lambda: 2.0
curUB: 42.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-8 -----------------------------
mu: 0.0
lambda: 1.0
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-9 -----------------------------
mu: 1.0
lambda: 1.0
curUB: 18.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-10 -----------------------------
mu: 6.0
lambda: 1.0
curUB: 60.0
subGradient: -10.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-11 -----------------------------
mu: 0.0
lambda: 0.5
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-12 -----------------------------
mu: 0.5
lambda: 0.5
curUB: 19.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-13 -----------------------------
mu: 3.0
lambda: 0.5
curUB: 34.0
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-14 -----------------------------
mu: 0.0
lambda: 0.25
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-15 -----------------------------
mu: 0.1875
lambda: 0.25
curUB: 19.625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-16 -----------------------------
mu: 1.4375
lambda: 0.25
curUB: 21.5
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-17 -----------------------------
mu: 0.0
lambda: 0.125
curUB: 20.0
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-18 -----------------------------
mu: 0.044921875
lambda: 0.125
curUB: 19.91015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-19 -----------------------------
mu: 0.669921875
lambda: 0.125
curUB: 18.66015625
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-20 -----------------------------
mu: 1.289306640625
lambda: 0.0625
curUB: 20.314453125
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-21 -----------------------------
mu: 0.206787109375
lambda: 0.0625
curUB: 19.58642578125
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-22 -----------------------------
mu: 0.22693252563476562
lambda: 0.0625
curUB: 19.54613494873047
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-23 -----------------------------
mu: 0.5265083312988281
lambda: 0.03125
curUB: 18.946983337402344
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-24 -----------------------------
mu: 0.6756666898727417
lambda: 0.03125
curUB: 18.648666620254517
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-25 -----------------------------
mu: 0.8154633045196533
lambda: 0.03125
curUB: 18.369073390960693
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-26 -----------------------------
mu: 0.9505987204611301
lambda: 0.015625
curUB: 18.09880255907774
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-27 -----------------------------
mu: 1.0159821063280106
lambda: 0.015625
curUB: 18.127856850624084
subGradient: -8.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-28 -----------------------------
mu: 0.7628945263568312
lambda: 0.015625
curUB: 18.474210947286338
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-29 -----------------------------
mu: 0.766863206459675
lambda: 0.0078125
curUB: 18.46627358708065
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-30 -----------------------------
mu: 0.7999655929725122
lambda: 0.0078125
curUB: 18.400068814054976
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-31 -----------------------------
mu: 0.833036974172046
lambda: 0.0078125
curUB: 18.333926051655908
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-32 -----------------------------
mu: 0.8658497429769483
lambda: 0.00390625
curUB: 18.268300514046103
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-33 -----------------------------
mu: 0.8821269422965887
lambda: 0.00390625
curUB: 18.235746115406823
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-34 -----------------------------
mu: 0.8982759667380851
lambda: 0.00390625
curUB: 18.20344806652383
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-35 -----------------------------
mu: 0.914361408369739
lambda: 0.001953125
curUB: 18.17127718326052
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-36 -----------------------------
mu: 0.9223725881222037
lambda: 0.001953125
curUB: 18.155254823755595
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-37 -----------------------------
mu: 0.9303523509964815
lambda: 0.001953125
curUB: 18.13929529800704
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-38 -----------------------------
mu: 0.9383164670353054
lambda: 9.765625E-4
curUB: 18.123367065929386
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-39 -----------------------------
mu: 0.9422907323175354
lambda: 9.765625E-4
curUB: 18.11541853536493
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
----------------------------- Epoch-40 -----------------------------
mu: 0.9462572201426962
lambda: 9.765625E-4
curUB: 18.107485559714608
subGradient: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
Early stop: step (9.896832958635996E-4) is less than minStep (0.001) !
----------------------------- Solution -----------------------------
bestMu: 2.0
bestUB: 18.0
bestLB: 10.0
gap: 44.44 %
bestX: [0.0, 1.0, 0.0, 0.0]
Solve Time: 152 ms
分析:
從最終結(jié)果可以看到, bestLB 為10,也就是通過拉格朗日松弛&次梯度算法得到的最優(yōu)可行解的目標(biāo)值為10,這明顯不是最優(yōu)解(最優(yōu)解應(yīng)該是16, x 1 = 1 x_1=1 x1?=1,其余變量為0)
這是因?yàn)槲覀兯沙诹艘粋€(gè)約束,所以通過拉格朗日松弛&次梯度算法得到的解不一定是最優(yōu)解。但是當(dāng)遇到一些很難求解的模型,但又不需要去求解它的精確解時(shí),拉格朗日松弛&次梯度算法就可以派上用場了!文章來源:http://www.zghlxwxcb.cn/news/detail-501703.html
參考鏈接:文章來源地址http://www.zghlxwxcb.cn/news/detail-501703.html
- 【凸優(yōu)化筆記5】-次梯度方法(Subgradient method)
- 運(yùn)籌學(xué)教學(xué)|快醒醒,你的熟人拉格朗日又來了?。?/li>
- 拉格朗日松弛求解整數(shù)規(guī)劃淺析(附Python代碼實(shí)例)
到了這里,關(guān)于【運(yùn)籌優(yōu)化】拉格朗日松弛 & 次梯度算法求解整數(shù)規(guī)劃問題 + Java調(diào)用Cplex實(shí)戰(zhàn)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!