国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

這篇具有很好參考價(jià)值的文章主要介紹了吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問(wèn)。

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

?? 下述代碼均在煮皮特上運(yùn)行喔

LLMs(large language models)

  • Base LLM:基于文本訓(xùn)練數(shù)據(jù)來(lái)預(yù)測(cè)做“文字接龍”
  • Instruction Tuned LLM(指令調(diào)整型LLM):接受了遵循指示的培訓(xùn),可以根據(jù)提前培訓(xùn)的輸入輸出對(duì)結(jié)果進(jìn)行調(diào)整

提示指南

兩個(gè)關(guān)鍵原則

編寫明確和具體的指令(明確 ≠ 短)

  • 策略一:用分隔符清楚的指示輸入的不同部分

    可以使用”””,`````,- - -,< >,<tag> </tag>。使用分隔符的好處:可以避免提示詞沖突,提示沖突是指如果允許用戶向提示中添加一些輸入,則他們可能會(huì)給出與我們想要的任務(wù)不符的指令,導(dǎo)致模型遵循用戶的指令而不是我們自己想要的指令

    • 栗子:

      import?openai
      import?os

      from?dotenv?import?load_dotenv,?find_dotenv
      _?=?load_dotenv(find_dotenv())

      openai.api_key?=?os.environ.get("OPENAI_API_KEY")

      def?get_completion(prompt,?model="gpt-3.5-turbo"):
      ????messages?=?[{"role":?"user",?"content":?prompt}]
      ????response?=?openai.ChatCompletion.create(
      ????????model=model,
      ????????messages=messages,
      ????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
      ????)
      ????return?response.choices[0].message["content"]

      text?=?f"""
      You?should?express?what?you?want?a?model?to?do?by?\
      providing?instructions?that?are?as?clear?and?\
      specific?as?you?can?possibly?make?them.?\
      This?will?guide?the?model?towards?the?desired?output,?\
      and?reduce?the?chances?of?receiving?irrelevant?\
      or?incorrect?responses.?Don't?confuse?writing?a?\
      clear?prompt?with?writing?a?short?prompt.?\
      In?many?cases,?longer?prompts?provide?more?clarity?\
      and?context?for?the?model,?which?can?lead?to?\
      more?detailed?and?relevant?outputs.
      """

      prompt?=?f"""
      Summarize?the?text?delimited?by?triple?backticks?\
      into?a?single?sentence.
      ```{text}```
      """

      response?=?get_completion(prompt)
      print(response)

      輸出:

      Clear?and?specific?instructions?should?be?provided?to?guide?a?model?towards?the?desired?output,?and?longer?prompts?can?provide?more?clarity?and?context?for?the?model,?leading?to?more?detailed?and?relevant?outputs.
  • 策略二:要求結(jié)構(gòu)化輸出

    可以使用HTML或JSON等結(jié)構(gòu)化輸出

    • 栗子:

      import?openai
      import?os

      from?dotenv?import?load_dotenv,?find_dotenv
      _?=?load_dotenv(find_dotenv())

      openai.api_key?=?os.environ.get("OPENAI_API_KEY")

      def?get_completion(prompt,?model="gpt-3.5-turbo"):
      ????messages?=?[{"role":?"user",?"content":?prompt}]
      ????response?=?openai.ChatCompletion.create(
      ????????model=model,
      ????????messages=messages,
      ????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
      ????)
      ????return?response.choices[0].message["content"]

      prompt?=?f"""
      Generate?a?list?of?three?made-up?book?titles?along?\
      with?their?authors?and?genres.
      Provide?them?in?JSON?format?with?the?following?keys:
      book_id,?title,?author,?genre.
      """

      response?=?get_completion(prompt)
      print(response)s?s??

      輸出:

      [
      ??{
      ????"book_id":?1,
      ????"title":?"The?Lost?City?of?Zorath",
      ????"author":?"Aria?Blackwood",
      ????"genre":?"Fantasy"
      ??},
      ??{
      ????"book_id":?2,
      ????"title":?"The?Last?Survivors",
      ????"author":?"Ethan?Stone",
      ????"genre":?"Science?Fiction"
      ??},
      ??{
      ????"book_id":?3,
      ????"title":?"The?Secret?of?the?Haunted?Mansion",
      ????"author":?"Lila?Rose",
      ????"genre":?"Mystery"
      ??}
      ]
  • 策略三:要求模型檢查是否滿足條件

    如果模型存在其他情況,可以要求模型檢查并返回不滿足條件時(shí)的響應(yīng)

    • 栗子1


      import?openai
      import?os

      from?dotenv?import?load_dotenv,?find_dotenv
      _?=?load_dotenv(find_dotenv())

      openai.api_key?=?os.environ.get("OPENAI_API_KEY")

      def?get_completion(prompt,?model="gpt-3.5-turbo"):
      ????messages?=?[{"role":?"user",?"content":?prompt}]
      ????response?=?openai.ChatCompletion.create(
      ????????model=model,
      ????????messages=messages,
      ????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
      ????)
      ????return?response.choices[0].message["content"]
      text_1?=?f"""
      Making?a?cup?of?tea?is?easy!?First,?you?need?to?get?some?\
      water?boiling.?While?that's?happening,?\
      grab?a?cup?and?put?a?tea?bag?in?it.?Once?the?water?is?\
      hot?enough,?just?pour?it?over?the?tea?bag.?\
      Let?it?sit?for?a?bit?so?the?tea?can?steep.?After?a?\
      few?minutes,?take?out?the?tea?bag.?If?you?\
      like,?you?can?add?some?sugar?or?milk?to?taste.?\
      And?that's?it!?You've?got?yourself?a?delicious?\
      cup?of?tea?to?enjoy.
      """

      prompt?=?f"""
      You?will?be?provided?with?text?delimited?by?triple?quotes.
      If?it?contains?a?sequence?of?instructions,?\
      re-write?those?instructions?in?the?following?format:

      Step?1?-?...
      Step?2?-?…

      Step?N?-?…

      If?the?text?does?not?contain?a?sequence?of?instructions,?\
      then?simply?write?\"No?steps?provided.\"

      \"\"\"{text_1}\"\"\"
      """

      response?=?get_completion(prompt)
      print("Completion?for?Text?1:")
      print(response)

      輸出

      Completion?for?Text?1:
      Step?1?-?Get?some?water?boiling.
      Step?2?-?Grab?a?cup?and?put?a?tea?bag?in?it.
      Step?3?-?Once?the?water?is?hot?enough,?pour?it?over?the?tea?bag.
      Step?4?-?Let?it?sit?for?a?bit?so?the?tea?can?steep.
      Step?5?-?After?a?few?minutes,?take?out?the?tea?bag.
      Step?6?-?Add?some?sugar?or?milk?to?taste.
      Step?7?-?Enjoy?your?delicious?cup?of?tea!
    • 栗子2

      import?openai
      import?os

      from?dotenv?import?load_dotenv,?find_dotenv
      _?=?load_dotenv(find_dotenv())

      openai.api_key?=?os.environ.get("OPENAI_API_KEY")

      def?get_completion(prompt,?model="gpt-3.5-turbo"):
      ????messages?=?[{"role":?"user",?"content":?prompt}]
      ????response?=?openai.ChatCompletion.create(
      ????????model=model,
      ????????messages=messages,
      ????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
      ????)
      ????return?response.choices[0].message["content"]
      text_2?=?f"""
      The?sun?is?shining?brightly?today,?and?the?birds?are?\
      singing.?It's?a?beautiful?day?to?go?for?a?\?
      walk?in?the?park.?The?flowers?are?blooming,?and?the?\?
      trees?are?swaying?gently?in?the?breeze.?People?\?
      are?out?and?about,?enjoying?the?lovely?weather.?\?
      Some?are?having?picnics,?while?others?are?playing?\?
      games?or?simply?relaxing?on?the?grass.?It's?a?\?
      perfect?day?to?spend?time?outdoors?and?appreciate?the?\?
      beauty?of?nature.
      """

      prompt?=?f"""
      You?will?be?provided?with?text?delimited?by?triple?quotes.?
      If?it?contains?a?sequence?of?instructions,?\?
      re-write?those?instructions?in?the?following?format:

      Step?1?-?...
      Step?2?-?…

      Step?N?-?…

      If?the?text?does?not?contain?a?sequence?of?instructions,?\?
      then?simply?write?\"No?steps?provided.\"

      \"\"\"{text_2}\"\"\"
      """

      response?=?get_completion(prompt)
      print("Completion?for?Text?2:")
      print(response)

      輸出:

      Completion?for?Text?2:
      No?steps?provided.
  • 策略四:少量訓(xùn)練提示

    這是在要求模型執(zhí)行任務(wù)之前,提示成功執(zhí)行任務(wù)的示例

    • 栗子

      import?openai
      import?os

      from?dotenv?import?load_dotenv,?find_dotenv
      _?=?load_dotenv(find_dotenv())

      openai.api_key?=?os.environ.get("OPENAI_API_KEY")

      def?get_completion(prompt,?model="gpt-3.5-turbo"):
      ????messages?=?[{"role":?"user",?"content":?prompt}]
      ????response?=?openai.ChatCompletion.create(
      ????????model=model,
      ????????messages=messages,
      ????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
      ????)
      ????return?response.choices[0].message["content"]
      prompt?=?f"""
      Your?task?is?to?answer?in?a?consistent?style.

      <child>:?Teach?me?about?patience.

      <grandparent>:?The?river?that?carves?the?deepest?\
      valley?flows?from?a?modest?spring;?the?\
      grandest?symphony?originates?from?a?single?note;?\
      the?most?intricate?tapestry?begins?with?a?solitary?thread.

      <child>:?Teach?me?about?resilience.
      """

      response?=?get_completion(prompt)
      print(response)

      輸出:

      <grandparent>:?Resilience?is?like?a?tree?that?bends?with?the?wind?but?never?breaks.?It?is?the?ability?to?bounce?back?from?adversity?and?keep?moving?forward,?even?when?things?get?tough.?Just?like?a?tree?that?grows?stronger?with?each?storm?it?weathers,?resilience?is?a?quality?that?can?be?developed?and?strengthened?over?time.

給模型足夠的時(shí)間來(lái)思考

如果模型急于做出錯(cuò)誤的結(jié)論而出現(xiàn)推理錯(cuò)誤,應(yīng)該嘗試重新查詢請(qǐng)求相關(guān)推理的鏈或序列,直到模型提供最終答案。如果我們給模型一個(gè)太復(fù)雜的任務(wù),讓他在短時(shí)間內(nèi)或用少數(shù)詞完成,他可能會(huì)猜測(cè)結(jié)果,但結(jié)果可能不正確。就像人一樣,如果我們要短時(shí)間內(nèi)完成復(fù)雜的數(shù)學(xué)計(jì)算可能也會(huì)出現(xiàn)錯(cuò)誤。

  • 策略一:指定完成任務(wù)所需的步驟

    • 栗子1

      text?=?f"""
      In?a?charming?village,?siblings?Jack?and?Jill?set?out?on?\?
      a?quest?to?fetch?water?from?a?hilltop?\?
      well.?As?they?climbed,?singing?joyfully,?misfortune?\?
      struck—Jack?tripped?on?a?stone?and?tumbled?\?
      down?the?hill,?with?Jill?following?suit.?\?
      Though?slightly?battered,?the?pair?returned?home?to?\?
      comforting?embraces.?Despite?the?mishap,?\?
      their?adventurous?spirits?remained?undimmed,?and?they?\?
      continued?exploring?with?delight.
      """

      #?example?1
      prompt_1?=?f"""
      Perform?the?following?actions:?
      1?-?Summarize?the?following?text?delimited?by?triple?\
      backticks?with?1?sentence.
      2?-?Translate?the?summary?into?French.
      3?-?List?each?name?in?the?French?summary.
      4?-?Output?a?json?object?that?contains?the?following?\
      keys:?french_summary,?num_names.

      Separate?your?answers?with?line?breaks.

      Text:
      ```{text}```
      """

      response?=?get_completion(prompt_1)
      print("Completion?for?prompt?1:")
      print(response)

      輸出:

      Completion?for?prompt?1:
      Two?siblings,?Jack?and?Jill,?go?on?a?quest?to?fetch?water?from?a?hilltop?well,?but?misfortune?strikes?as?they?both?fall?down?the?hill,?yet?they?return?home?slightly?battered?but?with?their?adventurous?spirits?undimmed.

      Deux?frères?et?s?urs,?Jack?et?Jill,?partent?en?quête?d'eau?d'un?puits?au?sommet?d'une?colline,?mais?ils?tombent?tous?les?deux?et?retournent?chez?eux?légèrement?meurtris?mais?avec?leur?esprit?d'aventure?intact.?
      Noms:?Jack,?Jill.

      {
      "french_summary":?"Deux?frères?et?s?urs,?Jack?et?Jill,?partent?en?quête?d'eau?d'un?puits?au?sommet?d'une?colline,?mais?ils?tombent?tous?les?deux?et?retournent?chez?eux?légèrement?meurtris?mais?avec?leur?esprit?d'aventure?intact.",
      "num_names":?2
      }

      這個(gè)結(jié)果出現(xiàn)了英語(yǔ)和法語(yǔ)交替出現(xiàn)的情況,我們需要只在結(jié)果里面生成法語(yǔ)

    • 栗子2

      prompt_2?=?f"""
      Your?task?is?to?perform?the?following?actions:?
      1?-?Summarize?the?following?text?delimited?by?
      ??<>?with?1?sentence.
      2?-?Translate?the?summary?into?French.
      3?-?List?each?name?in?the?French?summary.
      4?-?Output?a?json?object?that?contains?the?
      ??following?keys:?french_summary,?num_names.

      Use?the?following?format:
      Text:?<text?to?summarize>
      Summary:?<summary>
      Translation:?<summary?translation>
      Names:?<list?of?names?in?Italian?summary>
      Output?JSON:?<json?with?summary?and?num_names>

      Text:?<{text}>
      """

      response?=?get_completion(prompt_2)
      print("\nCompletion?for?prompt?2:")
      print(response)

      輸出

      Completion?for?prompt?2:
      Summary:?Jack?and?Jill?go?on?a?quest?to?fetch?water,?but?misfortune?strikes?and?they?tumble?down?the?hill,?returning?home?slightly?battered?but?with?their?adventurous?spirits?undimmed.?
      Translation:?Jack?et?Jill?partent?en?quête?d'eau,?mais?la?malchance?frappe?et?ils?dégringolent?la?colline,?rentrant?chez?eux?légèrement?meurtris?mais?avec?leurs?esprits?aventureux?intacts.
      Names:?Jack,?Jill
      Output?JSON:?{"french_summary":?"Jack?et?Jill?partent?en?quête?d'
      eau,?mais?la?malchance?frappe?et?ils?dégringolent?la?colline,?rentrant?chez?eux?légèrement?meurtris?mais?avec?leurs?esprits?aventureux?intacts.",?"num_names":?2}
  • 策略二:指示模型在做出結(jié)論之前思考解決方案

    有時(shí)候當(dāng)我們?cè)谀P徒o出結(jié)論之前,先讓模型推理出自己的解決方案時(shí),我們可以獲得更好的結(jié)果,也就是在讓模型說(shuō)出答案是否正確之前,為模型提供足夠時(shí)間去思考問(wèn)題

    • 栗子1

      prompt?=?f"""
      Determine?if?the?student's?solution?is?correct?or?not.

      Question:
      I'm?building?a?solar?power?installation?and?I?need?\
      ?help?working?out?the?financials.?
      -?Land?costs?$100?/?square?foot
      -?I?can?buy?solar?panels?for?$250?/?square?foot
      -?I?negotiated?a?contract?for?maintenance?that?will?cost?\?
      me?a?flat?$100k?per?year,?and?an?additional?$10?/?square?\
      foot
      What?is?the?total?cost?for?the?first?year?of?operations?
      as?a?function?of?the?number?of?square?feet.

      Student's?Solution:
      Let?x?be?the?size?of?the?installation?in?square?feet.
      Costs:
      1.?Land?cost:?100x
      2.?Solar?panel?cost:?250x
      3.?Maintenance?cost:?100,000?+?100x
      Total?cost:?100x?+?250x?+?100,000?+?100x?=?450x?+?100,000
      """

      response?=?get_completion(prompt)
      print(response)

      輸出:

      The?student's?solution?is?correct.

      但這個(gè)結(jié)果雖然看起來(lái)是正確的,但實(shí)際上是錯(cuò)誤的。模型只是按照思考方式看了一遍,但后同意了學(xué)生的解決方案。為了解決這個(gè)問(wèn)題,我們可以通過(guò)讓模型先計(jì)算自己的解決方案,然后再比較學(xué)生的解決方案和自己的解決方案來(lái)修正這個(gè)問(wèn)題

    • 栗子2

      ??prompt?=?f"""
      ??Your?task?is?to?determine?if?the?student's?solution?\
      ??is?correct?or?not.
      ??To?solve?the?problem?do?the?following:
      ??-?First,?work?out?your?own?solution?to?the?problem.?
      ??-?Then?compare?your?solution?to?the?student's?solution?\?
      ??and?evaluate?if?the?student's?solution?is?correct?or?not.?
      ??Don't?decide?if?the?student's?solution?is?correct?until?
      ??you?have?done?the?problem?yourself.

      ??Use?the?following?format:
      ??Question:
      ??```
      ??question?here
      ??```
      ??Student's?solution:
      ??```
      ??student's?solution?here
      ??```
      ??Actual?solution:
      ??```
      ??steps?to?work?out?the?solution?and?your?solution?here
      ??```
      ??Is?the?student's?solution?the?same?as?actual?solution?\
      ??just?calculated:
      ??```
      ??yes?or?no
      ??```
      ??Student?grade:
      ??```
      ??correct?or?incorrect
      ??```

      ??Question:
      ??```
      ??I'm?building?a?solar?power?installation?and?I?need?help?\
      ??working?out?the?financials.?
      ??-?Land?costs?$100?/?square?foot
      ??-?I?can?buy?solar?panels?for?$250?/?square?foot
      ??-?I?negotiated?a?contract?for?maintenance?that?will?cost?\
      ??me?a?flat?$100k?per?year,?and?an?additional?$10?/?square?\
      ??foot
      ??What?is?the?total?cost?for?the?first?year?of?operations?\
      ??as?a?function?of?the?number?of?square?feet.
      ??```?
      ??Student's?solution:
      ??```
      ??Let?x?be?the?size?of?the?installation?in?square?feet.
      ??Costs:
      ??1.?Land?cost:?100x
      ??2.?Solar?panel?cost:?250x
      ??3.?Maintenance?cost:?100,000?+?100x
      ??Total?cost:?100x?+?250x?+?100,000?+?100x?=?450x?+?100,000
      ??```
      ??Actual?solution:
      ??"""

      ??response?=?get_completion(prompt)
      ??print(response)

      輸出

      Let?x?be?the?size?of?the?installation?in?square?feet.

      Costs:
      1.?Land?cost:?100x
      2.?Solar?panel?cost:?250x
      3.?Maintenance?cost:?100,000?+?10x

      Total?cost:?100x?+?250x?+?100,000?+?10x?=?360x?+?100,000

      Is?the?student's?solution?the?same?as?actual?solution?just?calculated:
      No

      Student?grade:
      Incorrect

模型限制

幻覺

即便使用了大量的知識(shí)訓(xùn)練模型,但他并沒有完全記住他所看到的信息,因此他并不是非常了解其知識(shí)的邊界,這意味著他在回答某些問(wèn)題的時(shí)候,會(huì)編造聽起來(lái)合理但實(shí)際上不正確的內(nèi)容,這些內(nèi)容就叫做幻覺

  • 栗子

    Boie是一個(gè)真實(shí)的公司,但產(chǎn)品不是真的

    prompt?=?f"""
    Tell?me?about?AeroGlide?UltraSlim?Smart?Toothbrush?by?Boie
    """

    response?=?get_completion(prompt)
    print(response)

    輸出

    The?AeroGlide?UltraSlim?Smart?Toothbrush?by?Boie?is?a?high-tech?toothbrush?that?uses?advanced?sonic?technology?to?provide?a?deep?and?thorough?clean.?It?features?a?slim?and?sleek?design?that?makes?it?easy?to?hold?and?maneuver,?and?it?comes?with?a?range?of?smart?features?that?help?you?optimize?your?brushing?routine.

    One?of?the?key?features?of?the?AeroGlide?UltraSlim?Smart?Toothbrush?is?its?advanced?sonic?technology,?which?uses?high-frequency?vibrations?to?break?up?plaque?and?bacteria?on?your?teeth?and?gums.?This?technology?is?highly?effective?at?removing?even?the?toughest?stains?and?buildup,?leaving?your?teeth?feeling?clean?and?refreshed.

    In?addition?to?its?sonic?technology,?the?AeroGlide?UltraSlim?Smart?Toothbrush?also?comes?with?a?range?of?smart?features?that?help?you?optimize?your?brushing?routine.?These?include?a?built-in?timer?that?ensures?you?brush?for?the?recommended?two?minutes,?as?well?as?a?pressure?sensor?that?alerts?you?if?you're?brushing?too?hard.

    Overall,?the?AeroGlide?UltraSlim?Smart?Toothbrush?by?Boie?is?a?highly?advanced?and?effective?toothbrush?that?is?perfect?for?anyone?looking?to?take?their?oral?hygiene?to?the?next?level.?With?its?advanced?sonic?technology?and?smart?features,?it?provides?a?deep?and?thorough?clean?that?leaves?your?teeth?feeling?fresh?and?healthy.

減少幻覺的策略(步驟)

  1. 從文本中找到任何相關(guān)的引用
  2. 要求他使用這些引用來(lái)回答問(wèn)題
  3. 可以追溯答案

迭代提示開發(fā)過(guò)程

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記
  1. 有一個(gè)想要完成的任務(wù)的想法
  2. 嘗試編寫一個(gè)清晰、具體、如果合適的話,讓系統(tǒng)有足夠時(shí)間思考的提示
  3. 運(yùn)行并查看結(jié)果,如果結(jié)果不滿意,分析結(jié)果,找出prompt哪里不清晰,或者是不是沒有給模型足夠的時(shí)間
  4. 重新構(gòu)建想法和prompt
  5. 重復(fù)上述步驟,直到結(jié)果滿意

示例

  • 根據(jù)說(shuō)明書生成一份在線零售網(wǎng)站的描述

    fact_sheet_chair?=?"""
    OVERVIEW
    -?Part?of?a?beautiful?family?of?mid-century?inspired?office?furniture,?
    including?filing?cabinets,?desks,?bookcases,?meeting?tables,?and?more.
    -?Several?options?of?shell?color?and?base?finishes.
    -?Available?with?plastic?back?and?front?upholstery?(SWC-100)?
    or?full?upholstery?(SWC-110)?in?10?fabric?and?6?leather?options.
    -?Base?finish?options?are:?stainless?steel,?matte?black,?
    gloss?white,?or?chrome.
    -?Chair?is?available?with?or?without?armrests.
    -?Suitable?for?home?or?business?settings.
    -?Qualified?for?contract?use.

    CONSTRUCTION
    -?5-wheel?plastic?coated?aluminum?base.
    -?Pneumatic?chair?adjust?for?easy?raise/lower?action.

    DIMENSIONS
    -?WIDTH?53?CM?|?20.87”
    -?DEPTH?51?CM?|?20.08”
    -?HEIGHT?80?CM?|?31.50”
    -?SEAT?HEIGHT?44?CM?|?17.32”
    -?SEAT?DEPTH?41?CM?|?16.14”

    OPTIONS
    -?Soft?or?hard-floor?caster?options.
    -?Two?choices?of?seat?foam?densities:?
    ?medium?(1.8?lb/ft3)?or?high?(2.8?lb/ft3)
    -?Armless?or?8?position?PU?armrests?

    MATERIALS
    SHELL?BASE?GLIDER
    -?Cast?Aluminum?with?modified?nylon?PA6/PA66?coating.
    -?Shell?thickness:?10?mm.
    SEAT
    -?HD36?foam

    COUNTRY?OF?ORIGIN
    -?Italy
    """

第一次嘗試

prompt?=?f"""
Your?task?is?to?help?a?marketing?team?create?a?
description?for?a?retail?website?of?a?product?based?
on?a?technical?fact?sheet.

Write?a?product?description?based?on?the?information?
provided?in?the?technical?specifications?delimited?by?
triple?backticks.

Technical?specifications:?```{fact_sheet_chair}```
"""

response?=?get_completion(prompt)
print(response)

輸出

Introducing?our?stunning?mid-century?inspired?office?chair,?part?of?a?beautiful?family?of?furniture?that?includes?filing?cabinets,?desks,?bookcases,?meeting?tables,?and?more.?With?several?options?of?shell?color?and?base?finishes,?you?can?customize?this?chair?to?perfectly?match?your?decor.?Choose?between?plastic?back?and?front?upholstery?or?full?upholstery?in?10?fabric?and?6?leather?options.?The?base?finish?options?are?stainless?steel,?matte?black,?gloss?white,?or?chrome,?and?you?can?opt?for?armrests?or?no?armrests.

Constructed?with?a?5-wheel?plastic?coated?aluminum?base?and?a?pneumatic?chair?adjust?for?easy?raise/lower?action,?this?chair?is?both?sturdy?and?comfortable.?It's?suitable?for?home?or?business?settings?and?is?even?qualified?for?contract?use.

The?dimensions?of?this?chair?are?as?follows:?WIDTH?53?CM?|?20.87”,?DEPTH?51?CM?|?20.08”,?HEIGHT?80?CM?|?31.50”,?SEAT?HEIGHT?44?CM?|?17.32”,?SEAT?DEPTH?41?CM?|?16.14”.?You?can?also?choose?between?soft?or?hard-floor?caster?options?and?two?choices?of?seat?foam?densities:?medium?(1.8?lb/ft3)?or?high?(2.8?lb/ft3).

The?materials?used?in?this?chair?are?of?the?highest?quality.?The?shell?base?glider?is?made?of?cast?aluminum?with?modified?nylon?PA6/PA66?coating?and?has?a?shell?thickness?of?10?mm.?The?seat?is?made?of?HD36?foam.

This?chair?is?made?in?Italy?and?is?sure?to?add?a?touch?of?elegance?to?any?space.

結(jié)論

太長(zhǎng)啦!想要短一點(diǎn)

第二次嘗試

prompt?=?f"""
Your?task?is?to?help?a?marketing?team?create?a?
description?for?a?retail?website?of?a?product?based?
on?a?technical?fact?sheet.

Write?a?product?description?based?on?the?information?
provided?in?the?technical?specifications?delimited?by?
triple?backticks.

Use?at?most?50?words.

Technical?specifications:?```{fact_sheet_chair}```
"""

response?=?get_completion(prompt)
print(response)

輸出

Introducing?the?mid-century?inspired?office?chair,?part?of?a?beautiful?furniture?family.?Available?in?various?shell?colors?and?base?finishes,?with?plastic?or?full?upholstery?options?in?fabric?or?leather.?Suitable?for?home?or?business?use,?with?pneumatic?chair?adjust?and?soft/hard-floor?caster?options.?Made?in?Italy.

結(jié)論

  • 問(wèn)題一:模型可能對(duì)長(zhǎng)度比較模糊,但是問(wèn)題不大。
  • 問(wèn)題二:這個(gè)網(wǎng)站主要面向的是家具零售商,他們更關(guān)系椅子的技術(shù)細(xì)節(jié)和材料

第三次嘗試

prompt?=?f"""
Your?task?is?to?help?a?marketing?team?create?a?
description?for?a?retail?website?of?a?product?based?
on?a?technical?fact?sheet.

Write?a?product?description?based?on?the?information?
provided?in?the?technical?specifications?delimited?by?
triple?backticks.

The?description?is?intended?for?furniture?retailers,?
so?should?be?technical?in?nature?and?focus?on?the?
materials?the?product?is?constructed?from.

Use?at?most?50?words.

Technical?specifications:?```{fact_sheet_chair}```
"""

response?=?get_completion(prompt)
print(response)

輸出

Introducing?our?mid-century?inspired?office?chair,?perfect?for?both?home?and?business?settings.?With?a?range?of?shell?colors?and?base?finishes,?including?stainless?steel?and?matte?black,?this?chair?is?available?with?or?without?armrests?and?in?10?fabric?and?6?leather?options.?Constructed?with?a?5-wheel?plastic?coated?aluminum?base?and?HD36?foam?seat,?it?also?features?a?pneumatic?chair?adjust?for?easy?raise/lower?action.?Made?in?Italy?and?qualified?for?contract?use.

結(jié)論

在描述末尾,加上產(chǎn)品ID

第四次嘗試

prompt?=?f"""
Your?task?is?to?help?a?marketing?team?create?a?
description?for?a?retail?website?of?a?product?based?
on?a?technical?fact?sheet.

Write?a?product?description?based?on?the?information?
provided?in?the?technical?specifications?delimited?by?
triple?backticks.

The?description?is?intended?for?furniture?retailers,?
so?should?be?technical?in?nature?and?focus?on?the?
materials?the?product?is?constructed?from.

At?the?end?of?the?description,?include?every?7-character?
Product?ID?in?the?technical?specification.

Use?at?most?50?words.

Technical?specifications:?```{fact_sheet_chair}```
"""

response?=?get_completion(prompt)
print(response)

輸出

Introducing?our?mid-century?inspired?office?chair,?perfect?for?home?or?business?settings.?With?a?range?of?shell?colors?and?base?finishes,?and?the?option?of?plastic?or?full?upholstery?in?various?fabrics?and?leathers,?this?chair?is?both?stylish?and?versatile.?Constructed?with?a?5-wheel?plastic?coated?aluminum?base?and?pneumatic?chair?adjust,?it's?also?practical?and?comfortable.?Available?with?or?without?armrests?and?suitable?for?contract?use.?Product?ID:?SWC-100,?SWC-110.

結(jié)論

描述要清晰具體,并在必要時(shí)給模型一些思考時(shí)間,有了這些,先進(jìn)行一次嘗試,看看模型會(huì)給出什么結(jié)果,然后逐步改進(jìn)提示以接近所需的結(jié)果

最后最后

或許我們想要一個(gè)表格來(lái)展示數(shù)據(jù)

prompt?=?f"""
Your?task?is?to?help?a?marketing?team?create?a?
description?for?a?retail?website?of?a?product?based?
on?a?technical?fact?sheet.

Write?a?product?description?based?on?the?information?
provided?in?the?technical?specifications?delimited?by?
triple?backticks.

The?description?is?intended?for?furniture?retailers,?
so?should?be?technical?in?nature?and?focus?on?the?
materials?the?product?is?constructed?from.

At?the?end?of?the?description,?include?every?7-character?
Product?ID?in?the?technical?specification.

After?the?description,?include?a?table?that?gives?the?
product's?dimensions.?The?table?should?have?two?columns.
In?the?first?column?include?the?name?of?the?dimension.?
In?the?second?column?include?the?measurements?in?inches?only.

Give?the?table?the?title?'Product?Dimensions'.

Format?everything?as?HTML?that?can?be?used?in?a?website.?
Place?the?description?in?a?<div>?element.

Technical?specifications:?```{fact_sheet_chair}```
"""


response?=?get_completion(prompt)
print(response)

并通過(guò)展示得出一個(gè)HTML

from?IPython.display?import?display,?HTML
display(HTML(response))
吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

LLMs在軟件應(yīng)用程序中的用途

文本摘要

總結(jié)和提取單個(gè)文本信息

下面是一個(gè)總結(jié)評(píng)論的示例,總結(jié)評(píng)論一般用在購(gòu)物網(wǎng)站對(duì)評(píng)論進(jìn)行分析

prod_review?=?"""
Got?this?panda?plush?toy?for?my?daughter's?birthday,?\
who?loves?it?and?takes?it?everywhere.?It's?soft?and?\?
super?cute,?and?its?face?has?a?friendly?look.?It's?\?
a?bit?small?for?what?I?paid?though.?I?think?there?\?
might?be?other?options?that?are?bigger?for?the?\?
same?price.?It?arrived?a?day?earlier?than?expected,?\?
so?I?got?to?play?with?it?myself?before?I?gave?it?\?
to?her.
"""

生成摘要

prompt?=?f"""
Your?task?is?to?generate?a?short?summary?of?a?product?\
review?from?an?ecommerce?site.?

Summarize?the?review?below,?delimited?by?triple?
backticks,?in?at?most?30?words.?

Review:?```{prod_review}```
"""


response?=?get_completion(prompt)
print(response)

輸出

Soft?and?cute?panda?plush?toy?loved?by?daughter,?but?a?bit?small?for?the?price.?Arrived?early.

修改prompt,使總結(jié)更適用于某個(gè)部門,例如運(yùn)輸部門

prompt?=?f"""
Your?task?is?to?generate?a?short?summary?of?a?product?\
review?from?an?ecommerce?site?to?give?feedback?to?the?\
Shipping?deparmtment.?

Summarize?the?review?below,?delimited?by?triple?
backticks,?in?at?most?30?words,?and?focusing?on?any?aspects?\
that?mention?shipping?and?delivery?of?the?product.?

Review:?```{prod_review}```
"""


response?=?get_completion(prompt)
print(response)

輸出

The?panda?plush?toy?arrived?a?day?earlier?than?expected,?but?the?customer?felt?it?was?a?bit?small?for?the?price?paid.

如果是交給定價(jià)部門,再次修改prompt

prompt?=?f"""
Your?task?is?to?generate?a?short?summary?of?a?product?\
review?from?an?ecommerce?site?to?give?feedback?to?the?\
pricing?deparmtment,?responsible?for?determining?the?\
price?of?the?product.??

Summarize?the?review?below,?delimited?by?triple?
backticks,?in?at?most?30?words,?and?focusing?on?any?aspects?\
that?are?relevant?to?the?price?and?perceived?value.?

Review:?```{prod_review}```
"""


response?=?get_completion(prompt)
print(response)

輸出

The?panda?plush?toy?is?soft,?cute,?and?loved?by?the?recipient,?but?the?price?may?be?too?high?for?its?size?compared?to?other?options.

上面的prompt都是總結(jié),他也可以提取文本

prompt?=?f"""
Your?task?is?to?extract?relevant?information?from?\?
a?product?review?from?an?ecommerce?site?to?give?\
feedback?to?the?Shipping?department.?

From?the?review?below,?delimited?by?triple?quotes?\
extract?the?information?relevant?to?shipping?and?\?
delivery.?Limit?to?30?words.?

Review:?```{prod_review}```
"""


response?=?get_completion(prompt)
print(response)

輸出

"The?product?arrived?a?day?earlier?than?expected."

總結(jié)多個(gè)文本信息

review_1?=?prod_review?

#?review?for?a?standing?lamp
review_2?=?"""
Needed?a?nice?lamp?for?my?bedroom,?and?this?one?\
had?additional?storage?and?not?too?high?of?a?price?\
point.?Got?it?fast?-?arrived?in?2?days.?The?string?\
to?the?lamp?broke?during?the?transit?and?the?company?\
happily?sent?over?a?new?one.?Came?within?a?few?days?\
as?well.?It?was?easy?to?put?together.?Then?I?had?a?\
missing?part,?so?I?contacted?their?support?and?they?\
very?quickly?got?me?the?missing?piece!?Seems?to?me?\
to?be?a?great?company?that?cares?about?their?customers?\
and?products.?
"""


#?review?for?an?electric?toothbrush
review_3?=?"""
My?dental?hygienist?recommended?an?electric?toothbrush,?\
which?is?why?I?got?this.?The?battery?life?seems?to?be?\
pretty?impressive?so?far.?After?initial?charging?and?\
leaving?the?charger?plugged?in?for?the?first?week?to?\
condition?the?battery,?I've?unplugged?the?charger?and?\
been?using?it?for?twice?daily?brushing?for?the?last?\
3?weeks?all?on?the?same?charge.?But?the?toothbrush?head?\
is?too?small.?I’ve?seen?baby?toothbrushes?bigger?than?\
this?one.?I?wish?the?head?was?bigger?with?different?\
length?bristles?to?get?between?teeth?better?because?\
this?one?doesn’t.??Overall?if?you?can?get?this?one?\
around?the?$50?mark,?it's?a?good?deal.?The?manufactuer's?\
replacements?heads?are?pretty?expensive,?but?you?can?\
get?generic?ones?that're?more?reasonably?priced.?This?\
toothbrush?makes?me?feel?like?I've?been?to?the?dentist?\
every?day.?My?teeth?feel?sparkly?clean!?
"""


#?review?for?a?blender
review_4?=?"""
So,?they?still?had?the?17?piece?system?on?seasonal?\
sale?for?around?$49?in?the?month?of?November,?about?\
half?off,?but?for?some?reason?(call?it?price?gouging)?\
around?the?second?week?of?December?the?prices?all?went?\
up?to?about?anywhere?from?between?$70-$89?for?the?same?\
system.?And?the?11?piece?system?went?up?around?$10?or?\
so?in?price?also?from?the?earlier?sale?price?of?$29.?\
So?it?looks?okay,?but?if?you?look?at?the?base,?the?part?\
where?the?blade?locks?into?place?doesn’t?look?as?good?\
as?in?previous?editions?from?a?few?years?ago,?but?I?\
plan?to?be?very?gentle?with?it?(example,?I?crush?\
very?hard?items?like?beans,?ice,?rice,?etc.?in?the?\?
blender?first?then?pulverize?them?in?the?serving?size?\
I?want?in?the?blender?then?switch?to?the?whipping?\
blade?for?a?finer?flour,?and?use?the?cross?cutting?blade?\
first?when?making?smoothies,?then?use?the?flat?blade?\
if?I?need?them?finer/less?pulpy).?Special?tip?when?making?\
smoothies,?finely?cut?and?freeze?the?fruits?and?\
vegetables?(if?using?spinach-lightly?stew?soften?the?\?
spinach?then?freeze?until?ready?for?use-and?if?making?\
sorbet,?use?a?small?to?medium?sized?food?processor)?\?
that?you?plan?to?use?that?way?you?can?avoid?adding?so?\
much?ice?if?at?all-when?making?your?smoothie.?\
After?about?a?year,?the?motor?was?making?a?funny?noise.?\
I?called?customer?service?but?the?warranty?expired?\
already,?so?I?had?to?buy?another?one.?FYI:?The?overall?\
quality?has?gone?done?in?these?types?of?products,?so?\
they?are?kind?of?counting?on?brand?recognition?and?\
consumer?loyalty?to?maintain?sales.?Got?it?in?about?\
two?days.
"""


reviews?=?[review_1,?review_2,?review_3,?review_4]

生成結(jié)論

for?i?in?range(len(reviews)):
????prompt?=?f"""
????Your?task?is?to?generate?a?short?summary?of?a?product?\?
????review?from?an?ecommerce?site.?

????Summarize?the?review?below,?delimited?by?triple?\
????backticks?in?at?most?20?words.?

????Review:?```{reviews[i]}```
????"""


????response?=?get_completion(prompt)
????print(i,?response,?"\n")

推理

LLMs一個(gè)非常好的特點(diǎn)是,對(duì)于很多分析任務(wù),只需要編寫提示即可立即開始生成結(jié)果。

分類

下面是對(duì)評(píng)論進(jìn)行情感分類的示例

lamp_review?=?"""
Needed?a?nice?lamp?for?my?bedroom,?and?this?one?had?\
additional?storage?and?not?too?high?of?a?price?point.?\
Got?it?fast.??The?string?to?our?lamp?broke?during?the?\
transit?and?the?company?happily?sent?over?a?new?one.?\
Came?within?a?few?days?as?well.?It?was?easy?to?put?\
together.??I?had?a?missing?part,?so?I?contacted?their?\
support?and?they?very?quickly?got?me?the?missing?piece!?\
Lumina?seems?to?me?to?be?a?great?company?that?cares?\
about?their?customers?and?products!!
"""

判斷語(yǔ)氣

prompt?=?f"""
What?is?the?sentiment?of?the?following?product?review,?
which?is?delimited?with?triple?backticks?

Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)

輸出

The?sentiment?of?the?product?review?is?positive.

但是這個(gè)結(jié)果我希望他更簡(jiǎn)練一些,修改prompt

prompt?=?f"""
What?is?the?sentiment?of?the?following?product?review,?
which?is?delimited?with?triple?backticks?

Give?your?answer?as?a?single?word,?either?"positive"?\
or?"negative".

Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)

可以看到輸出了

positive

定義評(píng)論的情緒

prompt?=?f"""
Identify?a?list?of?emotions?that?the?writer?of?the?\
following?review?is?expressing.?Include?no?more?than?\
five?items?in?the?list.?Format?your?answer?as?a?list?of?\
lower-case?words?separated?by?commas.

Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)

輸出

happy,?satisfied,?grateful,?impressed,?content

p判斷用戶是否滿意

prompt?=?f"""
Is?the?writer?of?the?following?review?expressing?anger?\
The?review?is?delimited?with?triple?backticks.?\
Give?your?answer?as?either?yes?or?no.

Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)

s輸出

No

信息提取

下面是針對(duì)評(píng)論提取信息的例子

prompt?=?f"""
Identify?the?following?items?from?the?review?text:?
-?Item?purchased?by?reviewer
-?Company?that?made?the?item

The?review?is?delimited?with?triple?backticks.?\
Format?your?response?as?a?JSON?object?with?\
"Item"?and?"Brand"?as?the?keys.?
If?the?information?isn't?present,?use?"unknown"?\
as?the?value.
Make?your?response?as?short?as?possible.
??
Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)

輸出

{
??"Item":?"lamp?with?additional?storage",
??"Brand":?"Lumina"
}

一次完成多個(gè)任務(wù)

prompt?=?f"""
Identify?the?following?items?from?the?review?text:?
-?Sentiment?(positive?or?negative)
-?Is?the?reviewer?expressing?anger??(true?or?false)
-?Item?purchased?by?reviewer
-?Company?that?made?the?item

The?review?is?delimited?with?triple?backticks.?\
Format?your?response?as?a?JSON?object?with?\
"Sentiment",?"Anger",?"Item"?and?"Brand"?as?the?keys.
If?the?information?isn't?present,?use?"unknown"?\
as?the?value.
Make?your?response?as?short?as?possible.
Format?the?Anger?value?as?a?boolean.

Review?text:?'''{lamp_review}'''
"""

response?=?get_completion(prompt)
print(response)
{
??"Sentiment":?"positive",
??"Anger":?false,
??"Item":?"lamp?with?additional?storage",
??"Brand":?"Lumina"
}

根據(jù)文章提取主題

下面是一段文本描述,用來(lái)測(cè)試

story?=?"""
In?a?recent?survey?conducted?by?the?government,?
public?sector?employees?were?asked?to?rate?their?level?
of?satisfaction?with?the?department?they?work?at.?
The?results?revealed?that?NASA?was?the?most?popular?
department?with?a?satisfaction?rating?of?95%.

One?NASA?employee,?John?Smith,?commented?on?the?findings,?
stating,?"I'm?not?surprised?that?NASA?came?out?on?top.?
It's?a?great?place?to?work?with?amazing?people?and?
incredible?opportunities.?I'm?proud?to?be?a?part?of?
such?an?innovative?organization."

The?results?were?also?welcomed?by?NASA's?management?team,?
with?Director?Tom?Johnson?stating,?"We?are?thrilled?to?
hear?that?our?employees?are?satisfied?with?their?work?at?NASA.?
We?have?a?talented?and?dedicated?team?who?work?tirelessly?
to?achieve?our?goals,?and?it's?fantastic?to?see?that?their?
hard?work?is?paying?off."

The?survey?also?revealed?that?the?
Social?Security?Administration?had?the?lowest?satisfaction?
rating,?with?only?45%?of?employees?indicating?they?were?
satisfied?with?their?job.?The?government?has?pledged?to?
address?the?concerns?raised?by?employees?in?the?survey?and?
work?towards?improving?job?satisfaction?across?all?departments.
"""

提取5個(gè)主題

prompt?=?f"""
Determine?five?topics?that?are?being?discussed?in?the?\
following?text,?which?is?delimited?by?triple?backticks.

Make?each?item?one?or?two?words?long.?

Format?your?response?as?a?list?of?items?separated?by?commas.

Text?sample:?'''{story}'''
"""

response?=?get_completion(prompt)
print(response)

輸出

government?survey,?job?satisfaction,?NASA,?Social?Security?Administration,?employee?concerns

現(xiàn)在給定了以下主題

topic_list?=?[
????"nasa",?"local?government",?"engineering",?
????"employee?satisfaction",?"federal?government"
]

希望確認(rèn)文本包含了哪些給定主題

prompt?=?f"""
Determine?whether?each?item?in?the?following?list?of?\
topics?is?a?topic?in?the?text?below,?which
is?delimited?with?triple?backticks.

Give?your?answer?as?list?with?0?or?1?for?each?topic.\

List?of?topics:?{",?".join(topic_list)}

Text?sample:?'''{story}'''
"""

response?=?get_completion(prompt)
print(response)

輸出

nasa:?1
local?government:?0
engineering:?0
employee?satisfaction:?1
federal?government:?1

轉(zhuǎn)換

LLMs非常擅長(zhǎng)將其輸入轉(zhuǎn)換為不同的格式,比如將一種語(yǔ)言翻譯成另一種語(yǔ)言、糾正拼寫和語(yǔ)法錯(cuò)誤、轉(zhuǎn)換格式(JSON、HTML等)。下面是很多例子

翻譯

  • 翻譯
prompt?=?f"""
Translate?the?following?English?text?to?Spanish:?\?
```Hi,?I?would?like?to?order?a?blender```
"""

response?=?get_completion(prompt)
print(response)

輸出

Hola,?me?gustaría?ordenar?una?licuadora.
  • 指出所用語(yǔ)言
prompt?=?f"""
Tell?me?which?language?this?is:?
```Combien?co?te?le?lampadaire?```
"""

response?=?get_completion(prompt)
print(response)

輸出

This?is?French.
  • 同時(shí)翻譯成多種語(yǔ)言
prompt?=?f"""
Translate?the?following??text?to?French?and?Spanish
and?English?pirate:?\
```I?want?to?order?a?basketball```
"""

response?=?get_completion(prompt)
print(response)

輸出

French?pirate:?```Je?veux?commander?un?ballon?de?basket```
Spanish?pirate:?```Quiero?pedir?una?pelota?de?baloncesto```
English?pirate:?```I?want?to?order?a?basketball```
  • 可以通過(guò)告訴模型說(shuō)話者和聽眾的關(guān)系而改變翻譯
prompt?=?f"""
Translate?the?following?text?to?Spanish?in?both?the?\
formal?and?informal?forms:?
'Would?you?like?to?order?a?pillow?'
"""

response?=?get_completion(prompt)
print(response)

輸出

Formal:??Le?gustaría?ordenar?una?almohada?
Informal:??Te?gustaría?ordenar?una?almohada?
  • 想象一下,您在一家大型跨國(guó)電子商務(wù)公司負(fù)責(zé) IT。 用戶正在用他們所有的母語(yǔ)向您發(fā)送有關(guān) IT 問(wèn)題的消息。 您的員工來(lái)自世界各地,只說(shuō)他們的母語(yǔ)。 你需要一個(gè)萬(wàn)能翻譯器!
user_messages?=?[
??"La?performance?du?système?est?plus?lente?que?d'habitude.",??#?System?performance?is?slower?than?normal?????????
??"Mi?monitor?tiene?píxeles?que?no?se?iluminan.",??????????????#?My?monitor?has?pixels?that?are?not?lighting
??"Il?mio?mouse?non?funziona",?????????????????????????????????#?My?mouse?is?not?working
??"Mój?klawisz?Ctrl?jest?zepsuty",?????????????????????????????#?My?keyboard?has?a?broken?control?key
??"我的屏幕在閃爍"???????????????????????????????????????????????#?My?screen?is?flashing
]
for?issue?in?user_messages:
????prompt?=?f"Tell?me?what?language?this?is:?```{issue}```"
????lang?=?get_completion(prompt)
????print(f"Original?message?({lang}):?{issue}")

????prompt?=?f"""
????Translate?the?following??text?to?English?\
????and?Korean:?```{issue}```
????"""

????response?=?get_completion(prompt)
????print(response,?"\n")

語(yǔ)氣轉(zhuǎn)換

  • 將語(yǔ)句轉(zhuǎn)換成商業(yè)郵件的語(yǔ)氣
prompt?=?f"""
Translate?the?following?from?slang?to?a?business?letter:?
'Dude,?This?is?Joe,?check?out?this?spec?on?this?standing?lamp.'
"""

response?=?get_completion(prompt)
print(response)

輸出

Dear?Sir/Madam,

I?am?writing?to?bring?to?your?attention?a?standing?lamp?that?I?believe?may?be?of?interest?to?you.?Please?find?attached?the?specifications?for?your?review.

Thank?you?for?your?time?and?consideration.

Sincerely,

Joe

格式轉(zhuǎn)換

  • 將JSON轉(zhuǎn)換為HTML
data_json?=?{?"resturant?employees"?:[?
????{"name":"Shyam",?"email":"shyamjaiswal@gmail.com"},
????{"name":"Bob",?"email":"bob32@gmail.com"},
????{"name":"Jai",?"email":"jai87@gmail.com"}
]}

prompt?=?f"""
Translate?the?following?python?dictionary?from?JSON?to?an?HTML?\
table?with?column?headers?and?title:?{data_json}
"""

response?=?get_completion(prompt)
print(response)
from?IPython.display?import?display,?Markdown,?Latex,?HTML,?JSON
display(HTML(response))

輸出

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

拼寫和語(yǔ)法問(wèn)題檢查

text?=?[?
??"The?girl?with?the?black?and?white?puppies?have?a?ball.",??#?The?girl?has?a?ball.
??"Yolanda?has?her?notebook.",?#?ok
??"Its?going?to?be?a?long?day.?Does?the?car?need?it’s?oil?changed?",??#?Homonyms
??"Their?goes?my?freedom.?There?going?to?bring?they’re?suitcases.",??#?Homonyms
??"Your?going?to?need?you’re?notebook.",??#?Homonyms
??"That?medicine?effects?my?ability?to?sleep.?Have?you?heard?of?the?butterfly?affect?",?#?Homonyms
??"This?phrase?is?to?cherck?chatGPT?for?speling?abilitty"??#?spelling
]
for?t?in?text:
????prompt?=?f"""Proofread?and?correct?the?following?text
????and?rewrite?the?corrected?version.?If?you?don't?find
????and?errors,?just?say?"No?errors?found".?Don't?use?
????any?punctuation?around?the?text:
????```{t}```"""

????response?=?get_completion(prompt)
????print(response)
text?=?f"""
Got?this?for?my?daughter?for?her?birthday?cuz?she?keeps?taking?\
mine?from?my?room.??Yes,?adults?also?like?pandas?too.??She?takes?\
it?everywhere?with?her,?and?it's?super?soft?and?cute.??One?of?the?\
ears?is?a?bit?lower?than?the?other,?and?I?don't?think?that?was?\
designed?to?be?asymmetrical.?It's?a?bit?small?for?what?I?paid?for?it?\
though.?I?think?there?might?be?other?options?that?are?bigger?for?\
the?same?price.??It?arrived?a?day?earlier?than?expected,?so?I?got?\
to?play?with?it?myself?before?I?gave?it?to?my?daughter.
"""

prompt?=?f"proofread?and?correct?this?review:?```{text}```"
response?=?get_completion(prompt)
print(response)

輸出

I?got?this?for?my?daughter's?birthday?because?she?keeps?taking?mine?from?my?room.?Yes,?adults?also?like?pandas?too.?She?takes?it?everywhere?with?her,?and?it's?super?soft?and?cute.?However,?one?of?the?ears?is?a?bit?lower?than?the?other,?and?I?don't?think?that?was?designed?to?be?asymmetrical.?Additionally,?it's?a?bit?small?for?what?I?paid?for?it.?I?think?there?might?be?other?options?that?are?bigger?for?the?same?price.?On?the?positive?side,?it?arrived?a?day?earlier?than?expected,?so?I?got?to?play?with?it?myself?before?I?gave?it?to?my?daughter.

通過(guò)redlines來(lái)查看修改

from?redlines?import?Redlines

diff?=?Redlines(text,response)
display(Markdown(diff.output_markdown))
吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

嘗試生成APA風(fēng)格和面向多種目標(biāo)用戶的語(yǔ)句

prompt?=?f"""
proofread?and?correct?this?review.?Make?it?more?compelling.
Ensure?it?follows?APA?style?guide?and?targets?an?advanced?reader.
Output?in?markdown?format.
Text:?```{text}```
"""

response?=?get_completion(prompt)
display(Markdown(response))

輸出

Title:?A?Soft?and?Cute?Panda?Plush?Toy?for?All?Ages
Introduction:?As?a?parent,?finding?the?perfect?gift?for?your?child’s?birthday?can?be?a?daunting?task.?However,?I?stumbled?upon?a?soft?and?cute?panda?plush?toy?that?not?only?made?my?daughter?happy?but?also?brought?joy?to?me?as?an?adult.?In?this?review,?I?will?share?my?experience?with?this?product?and?provide?an?honest?assessment?of?its?features.
Product?Description:?The?panda?plush?toy?is?made?of?high-quality?materials?that?make?it?super?soft?and?cuddly.?Its?cute?design?is?perfect?for?children?and?adults?alike,?making?it?a?versatile?gift?option.?The?toy?is?small?enough?to?carry?around,?making?it?an?ideal?companion?for?your?child?on?their?adventures.
Pros:?The?panda?plush?toy?is?incredibly?soft?and?cute,?making?it?an?excellent?gift?for?children?and?adults.?Its?small?size?makes?it?easy?to?carry?around,?and?its?design?is?perfect?for?snuggling.?The?toy?arrived?a?day?earlier?than?expected,?which?was?a?pleasant?surprise.
Cons:?One?of?the?ears?is?a?bit?lower?than?the?other,?which?makes?the?toy?asymmetrical.?Additionally,?the?toy?is?a?bit?small?for?its?price,?and?there?might?be?other?options?that?are?bigger?for?the?same?price.
Conclusion:?Overall,?the?panda?plush?toy?is?an?excellent?gift?option?for?children?and?adults?who?love?cute?and?cuddly?toys.?Despite?its?small?size?and?asymmetrical?design,?the?toy’s?softness?and?cuteness?make?up?for?its?shortcomings.?If?you’re?looking?for?a?versatile?gift?option?that?will?bring?joy?to?your?child?and?yourself,?this?panda?plush?toy?is?an?excellent?choice.

擴(kuò)展

擴(kuò)展是指將段文本(如一組說(shuō)明或主題列表)通過(guò)LLMs轉(zhuǎn)化成更長(zhǎng)的文本(如一封電子郵件或一篇關(guān)于某個(gè)主題的文章)

根據(jù)信息生成個(gè)性化電子郵件

我們將編寫一個(gè)自定義的電子郵件回復(fù)工具。根據(jù)客戶的評(píng)論和情感,生成定制的回復(fù)

#?given?the?sentiment?from?the?lesson?on?"inferring",
#?and?the?original?customer?message,?customize?the?email
sentiment?=?"negative"

#?review?for?a?blender
review?=?f"""
So,?they?still?had?the?17?piece?system?on?seasonal?\
sale?for?around?$49?in?the?month?of?November,?about?\
half?off,?but?for?some?reason?(call?it?price?gouging)?\
around?the?second?week?of?December?the?prices?all?went?\
up?to?about?anywhere?from?between?$70-$89?for?the?same?\
system.?And?the?11?piece?system?went?up?around?$10?or?\
so?in?price?also?from?the?earlier?sale?price?of?$29.?\
So?it?looks?okay,?but?if?you?look?at?the?base,?the?part?\
where?the?blade?locks?into?place?doesn’t?look?as?good?\
as?in?previous?editions?from?a?few?years?ago,?but?I?\
plan?to?be?very?gentle?with?it?(example,?I?crush?\
very?hard?items?like?beans,?ice,?rice,?etc.?in?the?\?
blender?first?then?pulverize?them?in?the?serving?size?\
I?want?in?the?blender?then?switch?to?the?whipping?\
blade?for?a?finer?flour,?and?use?the?cross?cutting?blade?\
first?when?making?smoothies,?then?use?the?flat?blade?\
if?I?need?them?finer/less?pulpy).?Special?tip?when?making?\
smoothies,?finely?cut?and?freeze?the?fruits?and?\
vegetables?(if?using?spinach-lightly?stew?soften?the?\?
spinach?then?freeze?until?ready?for?use-and?if?making?\
sorbet,?use?a?small?to?medium?sized?food?processor)?\?
that?you?plan?to?use?that?way?you?can?avoid?adding?so?\
much?ice?if?at?all-when?making?your?smoothie.?\
After?about?a?year,?the?motor?was?making?a?funny?noise.?\
I?called?customer?service?but?the?warranty?expired?\
already,?so?I?had?to?buy?another?one.?FYI:?The?overall?\
quality?has?gone?done?in?these?types?of?products,?so?\
they?are?kind?of?counting?on?brand?recognition?and?\
consumer?loyalty?to?maintain?sales.?Got?it?in?about?\
two?days.
"""

prompt?=?f"""
You?are?a?customer?service?AI?assistant.
Your?task?is?to?send?an?email?reply?to?a?valued?customer.
Given?the?customer?email?delimited?by?```,?\
Generate?a?reply?to?thank?the?customer?for?their?review.
If?the?sentiment?is?positive?or?neutral,?thank?them?for?\
their?review.
If?the?sentiment?is?negative,?apologize?and?suggest?that?\
they?can?reach?out?to?customer?service.?
Make?sure?to?use?specific?details?from?the?review.
Write?in?a?concise?and?professional?tone.
Sign?the?email?as?`AI?customer?agent`.
Customer?review:?```{review}```
Review?sentiment:?{sentiment}
"""

response?=?get_completion(prompt)
print(response)

輸出

Dear?valued?customer,

Thank?you?for?taking?the?time?to?leave?a?review?about?our?product.?We?are?sorry?to?hear?that?you?experienced?a?price?increase?and?that?the?quality?of?the?product?did?not?meet?your?expectations.?We?apologize?for?any?inconvenience?this?may?have?caused?you.

If?you?have?any?further?concerns?or?questions,?please?do?not?hesitate?to?reach?out?to?our?customer?service?team.?They?will?be?more?than?happy?to?assist?you?in?any?way?they?can.

Thank?you?again?for?your?feedback.?We?appreciate?your?business?and?hope?to?have?the?opportunity?to?serve?you?better?in?the?future.

Best?regards,

AI?customer?agent

Temperature參數(shù)

該參數(shù)允許我們改變模型響應(yīng)的多樣性。temperature的范圍是0-1,數(shù)值越大,多樣性越大。建議設(shè)置為0,這樣可以構(gòu)建一個(gè)可靠和可預(yù)測(cè)的系統(tǒng)。

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記

聊天機(jī)器人

定義兩個(gè)方法,使用chatgpt的模型,兩個(gè)方法分別是單一對(duì)話,以及消息列表。這里可以注意到使用了新的對(duì)象ChatCompletion

def?get_completion(prompt,?model="gpt-3.5-turbo"):
????messages?=?[{"role":?"user",?"content":?prompt}]
????response?=?openai.ChatCompletion.create(
????????model=model,
????????messages=messages,
????????temperature=0,?#?this?is?the?degree?of?randomness?of?the?model's?output
????)
????return?response.choices[0].message["content"]

def?get_completion_from_messages(messages,?model="gpt-3.5-turbo",?temperature=0):
????response?=?openai.ChatCompletion.create(
????????model=model,
????????messages=messages,
????????temperature=temperature,?#?this?is?the?degree?of?randomness?of?the?model's?output
????)
#?????print(str(response.choices[0].message))
????return?response.choices[0].message["content"]

角色

吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記
  • system:提供指導(dǎo)方針,有助于設(shè)置助手的行為和人設(shè),并作為高層指令用于對(duì)話,而用戶不會(huì)意識(shí)到系統(tǒng)消息。他為開發(fā)者提供了一種在不將請(qǐng)求本身作為對(duì)話的一部分的情況下引導(dǎo)助手并指導(dǎo)其回復(fù)的方式
  • assistant:助手,chatgpt
  • user:用戶

示例

消息列表

messages?=??[
{'role':'system',?'content':'You?are?an?assistant?that?speaks?like?Shakespeare.'},
{'role':'user',?'content':'tell?me?a?joke'},
{'role':'assistant',?'content':'Why?did?the?chicken?cross?the?road'},
{'role':'user',?'content':'I?don\'t?know'}??]

獲取對(duì)話

response?=?get_completion_from_messages(messages,?temperature=1)
print(response)

輸出

{
??"content":?"Your?name?is?Isa!",
??"role":?"assistant"
}
Your?name?is?Isa!

提供上下文

messages?=??[??
{'role':'system',?'content':'You?are?friendly?chatbot.'},
{'role':'user',?'content':'Hi,?my?name?is?Isa'},
{'role':'assistant',?'content':?"Hi?Isa!?It's?nice?to?meet?you.?\
Is?there?anything?I?can?help?you?with?today?"
},
{'role':'user',?'content':'Yes,?you?can?remind?me,?What?is?my?name?'}??]
response?=?get_completion_from_messages(messages,?temperature=1)
print(response)

輸出

Your?name?is?Isa!

我們發(fā)現(xiàn),這里模型已經(jīng)知道我叫什么名字了。因?yàn)槟P驮谶@個(gè)輸入的信息列表中已經(jīng)擁有了它所需要的所有上下文,所以它能夠做出回應(yīng)。

構(gòu)建自己的機(jī)器人

我們可以自動(dòng)收集用戶提示和助手響應(yīng)以構(gòu)建 OrderBot。 OrderBot 將在比薩餐廳接受訂單。

在這個(gè)例子中,對(duì)話將被不斷添加到上下文中,每次對(duì)話都會(huì)使用這個(gè)上下文。

def?collect_messages(_):
????prompt?=?inp.value_input
????inp.value?=?''
????context.append({'role':'user',?'content':f"{prompt}"})
????response?=?get_completion_from_messages(context)
????context.append({'role':'assistant',?'content':f"{response}"})
????panels.append(
????????pn.Row('User:',?pn.pane.Markdown(prompt,?width=600)))
????panels.append(
????????pn.Row('Assistant:',?pn.pane.Markdown(response,?width=600,?style={'background-color':?'#F6F6F6'})))

????return?pn.Column(*panels)
import?panel?as?pn??#?GUI
pn.extension()

panels?=?[]?#?collect?display

context?=?[?{'role':'system',?'content':"""
You?are?OrderBot,?an?automated?service?to?collect?orders?for?a?pizza?restaurant.?\
You?first?greet?the?customer,?then?collects?the?order,?\
and?then?asks?if?it's?a?pickup?or?delivery.?\
You?wait?to?collect?the?entire?order,?then?summarize?it?and?check?for?a?final?\
time?if?the?customer?wants?to?add?anything?else.?\
If?it's?a?delivery,?you?ask?for?an?address.?\
Finally?you?collect?the?payment.\
Make?sure?to?clarify?all?options,?extras?and?sizes?to?uniquely?\
identify?the?item?from?the?menu.\
You?respond?in?a?short,?very?conversational?friendly?style.?\
The?menu?includes?\
pepperoni?pizza??12.95,?10.00,?7.00?\
cheese?pizza???10.95,?9.25,?6.50?\
eggplant?pizza???11.95,?9.75,?6.75?\
fries?4.50,?3.50?\
greek?salad?7.25?\
Toppings:?\
extra?cheese?2.00,?\
mushrooms?1.50?\
sausage?3.00?\
canadian?bacon?3.50?\
AI?sauce?1.50?\
peppers?1.00?\
Drinks:?\
coke?3.00,?2.00,?1.00?\
sprite?3.00,?2.00,?1.00?\
bottled?water?5.00?\
"""
}?]??#?accumulate?messages

inp?=?pn.widgets.TextInput(value="Hi",?placeholder='Enter?text?here…')
button_conversation?=?pn.widgets.Button(name="Chat!")

interactive_conversation?=?pn.bind(collect_messages,?button_conversation)

dashboard?=?pn.Column(
????inp,
????pn.Row(button_conversation),
????pn.panel(interactive_conversation,?loading_indicator=True,?height=300),
)

dashboard
messages?=??context.copy()
messages.append(
{'role':'system',?'content':'create?a?json?summary?of?the?previous?food?order.?Itemize?the?price?for?each?item\
?The?fields?should?be?1)?pizza,?include?size?2)?list?of?toppings?3)?list?of?drinks,?include?size???4)?list?of?sides?include?size??5)total?price?'
},
)
?#The?fields?should?be?1)?pizza,?price?2)?list?of?toppings?3)?list?of?drinks,?include?size?include?price??4)?list?of?sides?include?size?include?price,?5)total?price?'},

response?=?get_completion_from_messages(messages,?temperature=0)
print(response)

總結(jié)

LLMs是一種非常強(qiáng)大的技術(shù),使用的時(shí)候要負(fù)責(zé)任哦,只構(gòu)建對(duì)人們有積極影響的事物

本文由 mdnice 多平臺(tái)發(fā)布文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-464789.html

到了這里,關(guān)于吳恩達(dá)與OpenAI官方合作的ChatGPT提示工程課程筆記的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來(lái)自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 學(xué)習(xí)筆記:吳恩達(dá)ChatGPT提示工程

    學(xué)習(xí)筆記:吳恩達(dá)ChatGPT提示工程

    以下為個(gè)人筆記,原課程網(wǎng)址Short Courses | Learn Generative AI from DeepLearning.AI 1.1 基礎(chǔ)LLM 輸入 輸出 輸入 輸出 之所以這樣輸出的原因是,基礎(chǔ)LLM的輸出基于它的訓(xùn)練數(shù)據(jù),可能會(huì)產(chǎn)生我們不想得到的信息 1.2 指令微調(diào)型LLM 輸入 輸出 首先使用1.1中經(jīng)過(guò)大量文本數(shù)據(jù)訓(xùn)練過(guò)的基礎(chǔ)L

    2024年02月08日
    瀏覽(26)
  • 【ChatGPT】吳恩達(dá)『提示工程』課程完全筆記下載

    【ChatGPT】吳恩達(dá)『提示工程』課程完全筆記下載

    版權(quán)說(shuō)明:『ChatGPT Prompt Engineering for Developers』是DeepLearning.AI出品的免費(fèi)課程,版權(quán)屬于DeepLearning.AI(https://www.deeplearning.ai/)。 本文是對(duì)該課程內(nèi)容的翻譯整理,只作為教育用途,不作為任何商業(yè)用途。 吳恩達(dá)『開發(fā)者的提示工程』課程完全筆記(PDF) :https://github.com/youcan

    2024年02月02日
    瀏覽(22)
  • 吳恩達(dá)|chatgpt 提示詞工程師學(xué)習(xí)筆記。

    吳恩達(dá)|chatgpt 提示詞工程師學(xué)習(xí)筆記。

    目錄 一、提示指南 寫提示詞的2大原則: 模型的限制 二、迭代 三、總結(jié) 四、推斷 五、轉(zhuǎn)換 六、擴(kuò)展 七、對(duì)話機(jī)器人 吳恩達(dá)和openai團(tuán)隊(duì)共同開發(fā)了一款免費(fèi)的課程,課程是教大家如何更有效地使用prompt來(lái)調(diào)用chatgpt,整個(gè)課程時(shí)長(zhǎng)1個(gè)半小時(shí),也提供了對(duì)應(yīng)的環(huán)境和代碼,大

    2024年02月08日
    瀏覽(21)
  • ChatGPT prompt engineering (中文版)筆記 |吳恩達(dá)ChatGPT 提示工程

    ChatGPT prompt engineering (中文版)筆記 |吳恩達(dá)ChatGPT 提示工程

    出處:https://download.csdn.net/download/weixin_45766780/87746321 感謝中文版翻譯https://github.com/datawhalechina/prompt-engineering-for-developers/tree/main/content 國(guó)內(nèi) == 需要對(duì)openapi的endpoint做一個(gè)反向代理,并修改本地openai包的源代碼== 如下圖: completion 原則一:編寫清晰、具體的指令 你應(yīng)該通過(guò)提供

    2024年02月03日
    瀏覽(26)
  • 【簡(jiǎn)單入門】ChatGPT prompt engineering (中文版)筆記 |吳恩達(dá)ChatGPT 提示工程

    【簡(jiǎn)單入門】ChatGPT prompt engineering (中文版)筆記 |吳恩達(dá)ChatGPT 提示工程

    出處:https://download.csdn.net/download/weixin_45766780/87746321 感謝中文版翻譯https://github.com/datawhalechina/prompt-engineering-for-developers/tree/main/content 國(guó)內(nèi) == 需要對(duì)openapi的endpoint做一個(gè)反向代理,并修改本地openai包的源代碼== 如下圖: completion 原則一:編寫清晰、具體的指令 你應(yīng)該通過(guò)提供

    2024年02月05日
    瀏覽(23)
  • 吳恩達(dá)提示工程實(shí)戰(zhàn)演練 - 提示原則及其相關(guān)策略

    吳恩達(dá)提示工程實(shí)戰(zhàn)演練 - 提示原則及其相關(guān)策略

    ChatGPT爆火之后,與大語(yǔ)言模型對(duì)話能力(prompt engineering:提示工程)成為一項(xiàng)稀缺技能,現(xiàn)在招聘市場(chǎng)專業(yè)的prompt工程師年薪達(dá)到幾十萬(wàn)甚至百萬(wàn)。基于此,吳恩達(dá)(前百度首席科學(xué)家,谷歌大腦負(fù)責(zé)人)聯(lián)合openAI公司推出一套專業(yè)課程,講解如何與ChatGPT等大模型對(duì)話,接

    2024年02月17日
    瀏覽(14)
  • 吳恩達(dá)《面向開發(fā)者的提示詞工程》

    吳恩達(dá)《面向開發(fā)者的提示詞工程》

    Ref:?【中英字幕 | P01 Introduction】2023吳恩達(dá)新課《面向開發(fā)者的提示詞工程》_嗶哩嗶哩_bilibili 對(duì)應(yīng)的筆記?ChatGPT Prompt - 知乎 本課程主要介紹指令微調(diào)LLM的最佳實(shí)踐 在大型語(yǔ)言模型或LLM的開發(fā)中,大體上有兩種類型的LLM,我將其稱為 Base LLM ?和? Instruction Tuned LLM. 下面分別

    2024年02月10日
    瀏覽(24)
  • 吳恩達(dá)提示工程實(shí)戰(zhàn)演練 - 如何引導(dǎo)GPT主動(dòng)思考

    吳恩達(dá)提示工程實(shí)戰(zhàn)演練 - 如何引導(dǎo)GPT主動(dòng)思考

    策略:明確完成任務(wù)所需的步驟 接下來(lái)的任務(wù)我想讓GPT處理一段文本,且需要完成一下一系列任務(wù): 1)將文本總結(jié)成摘要? 2)將摘要翻譯成英文 3)提取英文摘要中的名字 4)將翻譯的英文摘要和提取的名字以JSON格式輸出 每一步任務(wù)都是緊密相關(guān)的,且都是依賴上一步任務(wù)

    2024年02月09日
    瀏覽(17)
  • 吳恩達(dá) Chatgpt prompt 工程--1.Guidelines

    吳恩達(dá) Chatgpt prompt 工程--1.Guidelines

    課程鏈接 Setup Prompting 原則 原則1: Write clear and specific instructions(寫清楚具體的說(shuō)明) 原則 2: Give the model time to “think”(給模型時(shí)間“思考”) 策略(原則1) 策略 1: Use delimiters to clearly indicate distinct parts of the input(使用分隔符清楚地指示輸入的不同部分) 分隔符可以是任

    2024年02月03日
    瀏覽(22)
  • 吳恩達(dá) & OpenAI 的Prompt教程筆記 - ChatGPT Prompt Engineering for Developers

    吳恩達(dá) & OpenAI 的Prompt教程筆記 - ChatGPT Prompt Engineering for Developers

    課程標(biāo)題:ChatGPT Prompt Engineering for Developers (Andrew Ng Isa Fulford) 課程章節(jié): 課程簡(jiǎn)介(Introduction) 提示工程關(guān)鍵原則 (Guidelines) 提示工程需要迭代(lterative) 總結(jié)類應(yīng)用(Summarizing) 推理類應(yīng)用(Inferring) 轉(zhuǎn)換類應(yīng)用(Transforming) 擴(kuò)展類應(yīng)用(Expanding) 打造聊天機(jī)器人(Chatbot) 課程總結(jié)(Concl

    2024年02月07日
    瀏覽(24)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包