OK,還有沒有更好玩的對
量化策略開發(fā),高質(zhì)量社群,交易思路分享等相關內(nèi)容
『正文』
ˇ
最近比較火的OpenAI-ChatGPT,太有意思了。嘗試讓它寫了幾個策略,您別說,還真是有模有樣。我們來看看吧。
模型一:均值回歸模型
源碼:
import numpy as np
import pandas as pd
from sklearn import linear_model
import numpy as np
import pandas as pd
from sklearn import linear_model
# 定義交易資金
capital = 100000
# 定義每次交易的數(shù)量
trade_qty = 1000
# 定義交易費用
trade_fee = 0.003
# 定義時間跨度
time_span = 10
# 計算交易收益
def calc_profit(open_price, close_price):
return (close_price - open_price) * trade_qty - trade_qty * trade_fee * 2
# 計算交易均值回歸模型
def calc_linear_model(df):
X = np.array(df['open']).reshape(-1, 1)
y = np.array(df['close']).reshape(-1, 1)
model = linear_model.LinearRegression()
model.fit(X, y)
return model.coef_[0][0], model.intercept_[0]
# 讀入交易數(shù)據(jù)
df = pd.read_csv('trade_data.csv')
# 計算交易均值回歸模型參數(shù)
slope, intercept = calc_linear_model(df)
# 初始化資產(chǎn)和交易結果
capital_list = []
result_list = []
# 開始交易
for i in range(time_span, len(df)):
# 計算收益
open_price = df.iloc[i-time_span]['open']
close_price = df.iloc[i]['close']
profit = calc_profit(open_price, close_price)
# 更新資產(chǎn)
capital += profit
# 記錄交易結果
capital_list.append(capital)
result_list.append(profit)
# 輸出交易結果
print('Final capital:', capital)
模型二:一個均線策略
源碼:
# 導入需要的庫
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 導入股票數(shù)據(jù)
stock_data = pd.read_csv('stock_data.csv')
# 計算移動平均線
ma_5 = stock_data['close'].rolling(5).mean()
ma_10 = stock_data['close'].rolling(10).mean()
# 繪制移動平均線圖
plt.plot(stock_data['date'], ma_5)
plt.plot(stock_data['date'], ma_10)
plt.title('Moving Average')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(['MA5', 'MA10'])
# 定義交易策略
def trade(stock_data, ma_5, ma_10):
# 創(chuàng)建交易信號數(shù)組
signals = np.zeros(len(stock_data))
# 遍歷每個交易日
for i in range(len(stock_data)):
# 如果MA5大于MA10,則買入
if ma_5[i] > ma_10[i]:
signals[i] = 1
# 如果MA5小于MA10,則賣出
elif ma_5[i] < ma_10[i]:
signals[i] = -1
return signals
# 運行交易策略
signals = trade(stock_data, ma_5, ma_10)
# 計算持倉和收益
position = 0
profit = 0
for i in range(len(signals)):
# 買入
if signals[i] == 1:
position += stock_data['close'][i]
# 賣出
elif signals[i] == -1:
profit += stock_data['close'][i] - position
position = 0
# 輸出最終收益
print('Final profit:', profit)
模型三:唐奇安通道+MACD
源碼:
?
import numpy as np
import talib
# 定義唐奇安通道函數(shù)
def Donchian(close, n):
high = talib.MAX(close, n)
low = talib.MIN(close, n)
return high, low
# 定義MACD函數(shù)
def MACD(close, n_fast, n_slow, n_signal):
macd, signal, hist = talib.MACD(close, n_fast, n_slow, n_signal)
return macd, signal, hist
# 定義交易函數(shù)
def trade(open, close, high, low, macd, signal, hist):
# 初始化持倉狀態(tài)和交易信號
position = 0
signal = 0
# 獲取唐奇安通道上軌和下軌
donchian_high, donchian_low = Donchian(close, 20)
# 計算MACD和信號線
macd, signal, hist = MACD(close, 12, 26, 9)
# 判斷交易信號
if position == 0:
# 如果當前沒有持倉,判斷開倉信號
if macd[-1] > signal[-1] and hist[-1] > 0 and close[-1] > donchian_high[-1]:
# 如果當前MACD大于信號線,且柱狀圖大于0,且收盤價高于唐奇安通道上軌,則開多倉
signal = 1
elif macd[-1] < signal[-1] and hist[-1] < 0 and close[-1] < donchian_low[-1]:
# 如果當前MACD小于信號線,且柱狀圖小于0,且收盤價低于唐奇安通道下軌,則開空倉
signal = -1
else:
# 如果當前有持倉,判斷平倉信號
if position > 0 and close[-1] < donchian_low[-1]:
# 如果當前持多倉,且收盤價低于唐奇安通道下軌,則平多倉
模型四:機器學習策略
源碼:
編寫期貨收益率預測模型的過程可能比較復雜,因為這類模型通常需要考慮許多因素。但是,以下是一個簡單的Python程序,它使用Scikit-learn庫來構建并訓練一個期貨收益率預測模型:
# Import necessary libraries
from sklearn import linear_model
from sklearn import metrics
# Load data
X = ... # Feature data
y = ... # Target data
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# Train model
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
# Evaluate model
y_pred = model.predict(X_test)
print(metrics.mean_squared_error(y_test, y_pred))
這個程序使用線性回歸來構建模型,并用均方誤差(MSE)來評估模型的性能。在實際應用中,您可能需要使用更復雜的模型,并使用多種指標來評估模型的性能。此外,您還需要準備足夠的數(shù)據(jù)來訓練模型,并確保數(shù)據(jù)的質(zhì)量和準確性。
哈哈哈,太有意思了鐵子們,我們和它聊聊天。
源碼:
import matplotlib.pyplot as plt
# Set figure size
plt.figure(figsize=(4, 4))
# Draw squirrel
plt.plot([1, 1, 2, 2, 3, 3, 4], [1, 2, 2, 3, 3, 2, 2], 'k')
plt.plot([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'k')
plt.plot([2, 2], [1.5, 2.5], 'k')
# Fill in the face and belly
plt.fill([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'b')
plt.fill([2, 2], [1.5, 2.5], 'b')
# Draw the eyes
plt.plot([1.25, 1.75], [1.75, 1.75], 'k')
plt.plot([2.25, 2.75], [1.75, 1.75], 'k')
# Show the plot
plt.show()
哈哈哈哈,這也不像松鼠啊。
OK,還有沒有更好玩的對話,評論區(qū)留言哈。
?你要的干貨都在這里→關注V V“松鼠寬客”
松鼠寬客:研究04丨波動率與CTA盈利關鍵https://blog.csdn.net/m0_56236921/article/details/126655526?spm=1001.2014.3001.5502
松鼠寬客:Pro08丨累計概率密度突破策略https://blog.csdn.net/m0_56236921/article/details/126637398?spm=1001.2014.3001.5502松鼠寬客:KD01策略丨SuperTrend+空頭波段https://blog.csdn.net/m0_56236921/article/details/126504676?spm=1001.2014.3001.5502
松鼠寬客:加降息與BTC流動性事件策略研究https://blog.csdn.net/m0_56236921/article/details/126136104?spm=1001.2014.3001.5502
?松鼠寬客:Pro_06丨重心拐點與高低波出場https://blog.csdn.net/m0_56236921/article/details/126704447?spm=1001.2014.3001.5502
松鼠寬客:基于訂單流工具,我們能看到什么?https://blog.csdn.net/m0_56236921/article/details/125478268?spm=1001.2014.3001.5502文章來源:http://www.zghlxwxcb.cn/news/detail-463553.html
松鼠寬客:LM11丨重構K線構建擇時交易策略https://blog.csdn.net/m0_56236921/article/details/125632587?spm=1001.2014.3001.5502文章來源地址http://www.zghlxwxcb.cn/news/detail-463553.html
到了這里,關于ChatGPT生成量化交易策略,真好玩的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!