1.機器學習
機器學習是人工智能 (AI)?和計算機科學的分支,專注于使用數(shù)據(jù)和算法來模仿人類學習的方式,逐漸提高其準確性。機器學習是不斷成長的數(shù)據(jù)科學領(lǐng)域的重要組成部分。 通過使用統(tǒng)計方法,對算法進行訓練,以進行分類或預測,揭示數(shù)據(jù)挖掘項目中的關(guān)鍵洞察。 然后,這些洞察可推動應用和業(yè)務中的決策,有效影響關(guān)鍵增長指標。 隨著大數(shù)據(jù)的持續(xù)擴大和增長,數(shù)據(jù)科學家的市場需求也水漲船高,要求他們協(xié)助確定最相關(guān)的業(yè)務問題,并隨后提供數(shù)據(jù)以獲得答案。
2.機器學習如何運作?
三個主要部分:決策過程,誤差函數(shù),模型優(yōu)化過程
- 決策過程:?通常,機器學習算法用于進行預測或分類。 算法可根據(jù)一些標簽化或未標簽化的輸入數(shù)據(jù),生成有關(guān)數(shù)據(jù)中模式的估算。
- 誤差函數(shù):?誤差函數(shù)用于評估模型的預測。 如果存在已知示例,那么誤差函數(shù)可以進行比較以評估模型的準確性。
- 模型優(yōu)化過程:?如果模型能夠更好地擬合訓練集中的數(shù)據(jù)點,那么會調(diào)整權(quán)重以減少已知示例和模型估算之間的差異。 該算法將重復此評估并優(yōu)化過程,自主更新權(quán)重,直到滿足精確性閾值為止。
3.線性回歸
回歸分析是用來評估變量之間關(guān)系的統(tǒng)計過程。用來解釋自變量X與因變量Y的關(guān)系。即當自變量X發(fā)生改變時,因變量Y會如何發(fā)生改變。
線性回歸是回歸分析的一種,評估的自變量X與因變量Y之間是一種線性關(guān)系。當只有一個自變量時,稱為簡單線性回歸,當具有多個自變量時,稱為多元線性回歸。在線性回歸中,數(shù)據(jù)使用線性預測函數(shù)來建模,并且未知的模型參數(shù)也是通過數(shù)據(jù)來估計。
4.波士頓房價----多元線性回歸程序
4.1.1 安裝sklearn鏡像
?4.1.2? 導入各種庫和包
?4.1.3? ?獲取各種所需要的數(shù)據(jù)
?4.1.4? 導出橫坐標的數(shù)據(jù)x
?4.1.5? 導出縱坐標的數(shù)據(jù)y
4.1.6? 線性回歸方程 完成機器學習六個步驟 1.導入數(shù)據(jù) 2.清洗數(shù)據(jù) 3.特征工程(提取有價值的數(shù)據(jù))4.建模? 5.評估 6.可視化(畫圖)
?4.1.7? ?調(diào)用函數(shù)
?5.最后完整代碼及運行結(jié)果如下:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ sklearn #安裝鏡像
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple/Note: you may need to restart the kernel to use updated packages. Requirement already satisfied: sklearn in d:\anaconda\lib\site-packages (0.0.post1)
from sklearn.datasets import load_boston #導入sklearn工具庫,獲取數(shù)據(jù)
from sklearn.model_selection import train_test_split #導入sklearn工具庫,數(shù)據(jù)處理
from sklearn.preprocessing import StandardScaler ?#導入sklearn工具庫,切分數(shù)據(jù)
from sklearn.linear_model import LinearRegression #導入線性回歸算法模型,特征工程——標準化
from sklearn.metrics import mean_squared_error ?#導入sklearn工具庫,模型評估
import pandas as pd #導入pandas庫
import numpy as np #導入numpy庫,均方誤差
data=load_boston()
data.keys() ? #獲取頁面中需要的數(shù)據(jù)
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename', 'data_module'])
data.target ?#導出x的數(shù)據(jù)
array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. , 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6, 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2, 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7, 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9, 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5, 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. , 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2, 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8, 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4, 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. , 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6, 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4, 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4, 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7, 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4, 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. , 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3, 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4, 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. , 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3, 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1, 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6, 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. , 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4, 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. , 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1, 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2, 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1, 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6, 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7, 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1, 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8, 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8, 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8, 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1, 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9, 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4, 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. , 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8, 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4, 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7, 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2, 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8, 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5, 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])
data.data ?#導出y的數(shù)據(jù)
array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02, 4.9800e+00], [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02, 9.1400e+00], [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02, 4.0300e+00], ..., [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02, 5.6400e+00], [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02, 6.4800e+00], [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02, 7.8800e+00]])
def linear_mode11(): ?#線性回歸:正規(guī)方程
? ? data =load_boston() ? #獲取數(shù)據(jù)
? ? x_train, x_test, y_train, y_test = train_test_split(data.data, data. target, random_state=22) ?#數(shù)據(jù)集劃分
? ? transfer= StandardScaler() ?#特征工程——標準化
? ? x_train=transfer.fit_transform(x_train)
? ? x_test=transfer.fit_transform(x_test)
? ? estimator=LinearRegression() ?#機器學習——線性回歸(正規(guī)方程)
? ? estimator.fit(x_train,y_train)
? ? y_predict=estimator.predict(x_test) ?#模型評估,獲取系數(shù)等值
? ? print("預測值為:\n",y_predict)
? ? print("模型中的系數(shù)為:\n",estimator.coef_)
? ? print("模型中的偏置為:\n",estimator.intercept_)
? ? error=mean_squared_error(y_test,y_predict) ? #評價,均方誤差
? ? print("誤差為:\n",error)
? ? return None
linear_mode11() ?#調(diào)用函數(shù)
預測值為: [28.14790667 31.30481159 20.5173895 31.4803076 19.01576648 18.26058425 20.57439825 18.45232382 18.46065155 32.93661269 20.3603692 27.24886071 14.81691426 19.20872297 37.01503458 18.32036009 7.71389628 17.56196944 30.18543811 23.60655873 18.14917545 33.84385342 28.48976083 16.9967041 34.76065063 26.22246312 34.83857168 26.62310118 18.64402278 13.21154037 30.37364532 14.70785748 37.18173708 8.88049446 15.06699441 16.14502168 7.19990762 19.17049423 39.56848262 28.23663 24.62411509 16.75182833 37.84465582 5.71770376 21.21547924 24.63882018 18.8561516 19.93416672 15.19839712 26.29892968 7.4274177 27.14300763 29.18745146 16.27895854 7.99799673 35.46394958 32.38905222 20.83161049 16.41464618 20.87141783 22.92150844 23.60828508 19.32245804 38.33751529 23.87463642 18.98494066 12.63480997 6.12915396 41.44675745 21.08894595 16.27561572 21.48546861 40.74502107 20.4839158 36.82098808 27.0452329 19.79437176 19.64484428 24.58763105 21.08454269 30.91968983 19.3326693 22.30088735 31.0904808 26.36418084 20.25648139 28.81879823 20.82632806 26.01779216 19.37871837 24.9599814 22.31091614 18.94468902 18.77414161 14.07143768 17.44450331 24.19727889 15.86077811 20.09007025 26.51946463 20.1336741 17.02456077 23.86647679 22.84428441 21.00754322 36.17169898 14.67959839 20.5656347 32.46704858 33.24183156 19.81162376 26.55899048 20.90676734 16.42301853 20.76605527 20.54658755 26.86304808 24.14176193 23.23824644 13.81640493 15.37727091 2.79513898 28.89744167 19.80407672 21.50002831 27.5410586 28.54270527] 模型中的系數(shù)為: [-0.64817766 1.14673408 -0.05949444 0.74216553 -1.95515269 2.70902585 -0.07737374 -3.29889391 2.50267196 -1.85679269 -1.75044624 0.87341624 -3.91336869] 模型中的偏置為: 22.62137203166228 誤差為: 20.0621939903598
學號:202113430110文章來源:http://www.zghlxwxcb.cn/news/detail-456068.html
姓名:羅媛文章來源地址http://www.zghlxwxcb.cn/news/detail-456068.html
到了這里,關(guān)于機器學習(線性回歸實訓)------波士頓房價的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!