前言
- 本文是個(gè)人使用YOLOv7訓(xùn)練自己的VOC數(shù)據(jù)集的應(yīng)用案例,由于水平有限,難免出現(xiàn)錯(cuò)漏,敬請(qǐng)批評(píng)改正。
- YOLOv7代碼結(jié)構(gòu)與YOLOv5很相似,要求的數(shù)據(jù)集格式也一致,熟悉YOLOv5,可以快速入手YOLOv7。
- 更多精彩內(nèi)容,可點(diǎn)擊進(jìn)入我的個(gè)人主頁查看
前提條件
- 熟悉Python
實(shí)驗(yàn)環(huán)境
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
protobuf<4.21.3
項(xiàng)目結(jié)構(gòu)
yolov7_train_mydatasets
├─cfg
├─data
├─deploy
├─figure
├─inference
│ └─images
├─models
├─paper
├─scripts
├─tools
├─utils
├─VOCdevkit
└─VOC2007
├─Annotations
└─JPEGImages
│ .gitignore
│ detect.py
│ export.py
│ hubconf.py
│ labelImg2yolo.py
│ LICENSE.md
│ README.md
│ requirements.txt
│ test.py
│ train.py
│ train_aux.py
│ yolov7.pt
制作自己的數(shù)據(jù)集
- LabelImg是一款功能相當(dāng)實(shí)用且被廣泛使用的圖像標(biāo)注工具,為開發(fā)人員提供一個(gè)可以自定義制作和創(chuàng)建數(shù)據(jù)集的平臺(tái),所以我們這里使用LabelImg圖像標(biāo)注工具,來制作自己的數(shù)據(jù)集。
- LabelImg下載地址 提取碼:sjbz
- 圖像標(biāo)注完成后,LabelImg 圖像標(biāo)注工具會(huì)生成.xml格式的文件,.xml格式的文件中包含標(biāo)注圖像的路徑、大小以及標(biāo)注圖像中的目標(biāo)的類別信息和目標(biāo)的真實(shí)框在圖像中的位置信息等。
- 使用LabelImg 標(biāo)注工具進(jìn)行數(shù)據(jù)標(biāo)注示例如下圖所示。
![]()
- 使用LabelImg 圖像標(biāo)注工具會(huì)生成.xml格式的文件及其文件內(nèi)容示例如下圖所示。
![]()
<annotation>
<folder></folder>
<filename>01.jpg</filename>
<path></path>
<source>
<database>Unknown</database>
</source>
<size>
<width>1179</width>
<height>710</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>with_mask</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>89</xmin>
<ymin>37</ymin>
<xmax>492</xmax>
<ymax>659</ymax>
</bndbox>
</object>
<object>
<name>without_mask</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>680</xmin>
<ymin>31</ymin>
<xmax>1071</xmax>
<ymax>684</ymax>
</bndbox>
</object>
</annotation>
數(shù)據(jù)集目錄結(jié)構(gòu)
├─VOCdevkit
└─VOC2007
├─Annotations
│ 01.xml
│ ......
└─JPEGImages
01.jpg
......
訓(xùn)練自己的數(shù)據(jù)集
VOC格式數(shù)據(jù)集轉(zhuǎn)換成YOLO格式數(shù)據(jù)集
在yolov7_train_mydatasets目錄下,打開labelImg2yolo.py文件
# 修改成自己數(shù)據(jù)集的類別名
classes = ["with_mask","without_mask"]
然后,運(yùn)行l(wèi)abelImg2yolo.py
python labelImg2yolo.py
生成yolo格式的訓(xùn)練和驗(yàn)證數(shù)據(jù)集
修改cfg配置
新建一個(gè)myyolov7.yaml配置文件
myyolov7.yaml內(nèi)容
# parameters
nc: 2 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# anchors
anchors:
- [12,16, 19,36, 40,28] # P3/8
- [36,75, 76,55, 72,146] # P4/16
- [142,110, 192,243, 459,401] # P5/32
# yolov7 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 1, Conv, [64, 1, 1]],
[-2, 1, Conv, [64, 1, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[[-1, -3, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1]], # 11
[-1, 1, MP, []],
[-1, 1, Conv, [128, 1, 1]],
[-3, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [128, 3, 2]],
[[-1, -3], 1, Concat, [1]], # 16-P3/8
[-1, 1, Conv, [128, 1, 1]],
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[[-1, -3, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [512, 1, 1]], # 24
[-1, 1, MP, []],
[-1, 1, Conv, [256, 1, 1]],
[-3, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [256, 3, 2]],
[[-1, -3], 1, Concat, [1]], # 29-P4/16
[-1, 1, Conv, [256, 1, 1]],
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[[-1, -3, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [1024, 1, 1]], # 37
[-1, 1, MP, []],
[-1, 1, Conv, [512, 1, 1]],
[-3, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [512, 3, 2]],
[[-1, -3], 1, Concat, [1]], # 42-P5/32
[-1, 1, Conv, [256, 1, 1]],
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[[-1, -3, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [1024, 1, 1]], # 50
]
# yolov7 head
head:
[[-1, 1, SPPCSPC, [512]], # 51
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[37, 1, Conv, [256, 1, 1]], # route backbone P4
[[-1, -2], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1]],
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1]], # 63
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[24, 1, Conv, [128, 1, 1]], # route backbone P3
[[-1, -2], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1]],
[-2, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[-1, 1, Conv, [64, 3, 1]],
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [128, 1, 1]], # 75
[-1, 1, MP, []],
[-1, 1, Conv, [128, 1, 1]],
[-3, 1, Conv, [128, 1, 1]],
[-1, 1, Conv, [128, 3, 2]],
[[-1, -3, 63], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1]],
[-2, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[-1, 1, Conv, [128, 3, 1]],
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [256, 1, 1]], # 88
[-1, 1, MP, []],
[-1, 1, Conv, [256, 1, 1]],
[-3, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [256, 3, 2]],
[[-1, -3, 51], 1, Concat, [1]],
[-1, 1, Conv, [512, 1, 1]],
[-2, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[-1, 1, Conv, [256, 3, 1]],
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
[-1, 1, Conv, [512, 1, 1]], # 101
[75, 1, RepConv, [256, 3, 1]],
[88, 1, RepConv, [512, 3, 1]],
[101, 1, RepConv, [1024, 3, 1]],
[[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
]
創(chuàng)建自己數(shù)據(jù)集的yaml文件
新建mydata.yaml文件
mydata.yaml文件內(nèi)容
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ./VOCdevkit
val: ./VOCdevkit
# number of classes
nc: 2
# class names
names: ["with_mask","without_mask"]
進(jìn)行訓(xùn)練
python train.py --workers 8 --batch-size 4 --data data/mydata.yaml --img 640 640 --cfg cfg/training/myyolov7.yaml --weights 'yolov7.pt' --name myyolov7-train --hyp data/hyp.scratch.p5.yaml
訓(xùn)練完成,生成init.pt、best.pt和last.pt權(quán)重。
進(jìn)行測(cè)試
python test.py --data data/mydata.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --weights runs/train/myyolov7-train12/weights/best.pt --name myyolov7-train
進(jìn)行預(yù)測(cè)
python detect.py --weights runs/train/myyolov7-train12/weights/best.pt --conf 0.25 --img-size 640 --source inference/images/face_mask.jpg
源碼獲取
獲取鏈接 提取碼:kzjc文章來源:http://www.zghlxwxcb.cn/news/detail-447986.html
參考文獻(xiàn)
[1] https://github.com/WongKinYiu/yolov7
[2] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,2022.文章來源地址http://www.zghlxwxcb.cn/news/detail-447986.html
- 更多精彩內(nèi)容,可點(diǎn)擊進(jìn)入我的個(gè)人主頁查看
到了這里,關(guān)于YOLOv7訓(xùn)練自己的數(shù)據(jù)集(口罩檢測(cè))的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!