国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size

這篇具有很好參考價(jià)值的文章主要介紹了鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

1、摘要

本文主要講解:使用鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size
主要思路:

  1. 鯨魚算法 Parameters : 迭代次數(shù)、鯨魚的維度、鯨魚的數(shù)量, 參數(shù)的上限,參數(shù)的下限
  2. LSTM Parameters 神經(jīng)網(wǎng)絡(luò)第一層神經(jīng)元個(gè)數(shù)、神經(jīng)網(wǎng)絡(luò)第二層神經(jīng)元個(gè)數(shù)、dropout比率、batch_size
  3. 開始搜索:初始化所鯨魚的位置、迭代尋優(yōu)、返回超出搜索空間邊界的搜索代理、計(jì)算每個(gè)搜索代理的目標(biāo)函數(shù)、更新 Alpha, Beta, and Delta
  4. 訓(xùn)練模型,使用鯨魚算法找到的最好的全局最優(yōu)參數(shù)
  5. plt.show()

2、數(shù)據(jù)介紹

zgpa_train.csv
DIANCHI.csv

需要數(shù)據(jù)的話去我其他文章的評(píng)論區(qū)
可接受定制

3、相關(guān)技術(shù)

WOA算法設(shè)計(jì)的既精妙又富有特色,它源于對(duì)自然界中座頭鯨群體狩獵行為的模擬, 通過鯨魚群體搜索、包圍、追捕和攻擊獵物等過程實(shí)現(xiàn)優(yōu)時(shí)化搜索的目的。在原始的WOA中,提供了包圍獵物,螺旋氣泡、尋找獵物的數(shù)學(xué)模型。
鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size
鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size
PS:如陷入局部最優(yōu)建議修改參數(shù)的上下限或者修改鯨魚尋優(yōu)的速度

4、完整代碼和步驟

代碼輸出如下:

此程序運(yùn)行代碼版本為:

tensorflow==2.5.0
numpy==1.19.5
keras==2.6.0
matplotlib==3.5.2

鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size

主運(yùn)行程序入口文章來源地址http://www.zghlxwxcb.cn/news/detail-415276.html

import math
import os

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.layers import Dense, Dropout, LSTM
from tensorflow.python.keras.layers.core import Activation
from tensorflow.python.keras.models import Sequential

os.chdir(r'D:\項(xiàng)目\PSO-LSTM\具體需求')
'''
灰狼算法優(yōu)化LSTM
'''
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用來正常顯示中文標(biāo)簽
plt.rcParams['axes.unicode_minus'] = False  # 用來正常顯示負(fù)號(hào)


def creat_dataset(dataset, look_back):
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - 1):
        a = dataset[i: (i + look_back)]
        dataX.append(a)
        dataY.append(dataset[i + look_back])
    return np.array(dataX), np.array(dataY)


dataframe = pd.read_csv('zgpa_train.csv', header=0, parse_dates=[0], index_col=0, usecols=[0, 5], squeeze=True)
dataset = dataframe.values
data = pd.read_csv('DIANCHI.csv', header=0)
z = data['fazhi']

scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))

train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]
look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)


def build_model(neurons1, neurons2, dropout):
    X_train, y_train = trainX, trainY
    X_test, y_test = testX, testY
    model = Sequential()

    model.add(LSTM(units=neurons1, return_sequences=True, input_shape=(10, 1)))
    model.add(LSTM(units=neurons2, return_sequences=True))
    model.add(LSTM(111, return_sequences=False))
    model.add(Dropout(dropout))
    model.add(Dense(55))
    model.add(Dense(units=1))
    model.add(Activation('relu'))
    model.compile(loss='mean_squared_error', optimizer='Adam')
    return model, X_train, y_train, X_test, y_test


def training(X):
    neurons1 = int(X[0])
    neurons2 = int(X[1])
    dropout = round(X[2], 6)
    batch_size = int(X[3])
    print([neurons1,neurons2,dropout,batch_size])
    model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)
    model.fit(
        X_train,
        y_train,
        batch_size=batch_size,
        epochs=10,
        validation_split=0.1,
        verbose=0,
        callbacks=[EarlyStopping(monitor='val_loss', patience=22, restore_best_weights=True)])

    pred = model.predict(X_test)
    temp_mse = mean_squared_error(y_test, pred)
    print(temp_mse)
    return temp_mse




class woa():
    # 初始化
    def __init__(self, LB, UB, dim=4, b=1, whale_num=20, max_iter=500):
        self.LB = LB
        self.UB = UB
        self.dim = dim
        self.whale_num = whale_num
        self.max_iter = max_iter
        self.b = b
        # Initialize the locations of whale
        self.X = np.random.uniform(0, 1, (whale_num, dim)) * (UB - LB) + LB

        self.gBest_score = np.inf
        self.gBest_curve = np.zeros(max_iter)
        self.gBest_X = np.zeros(dim)

    # 適應(yīng)度函數(shù) max_depth,min_samples_split,min_samples_leaf,max_leaf_nodes
    def fitFunc(self, para):
        # 建立模型
        mse = training(para)
        return mse
        # 優(yōu)化模塊
    def opt(self):
        t = 0
        while t < self.max_iter:
            print('At iteration: ' + str(t))
            for i in range(self.whale_num):
                # 防止X溢出
                self.X[i, :] = np.clip(self.X[i, :], self.LB, self.UB)  # Check boundries
                fitness = self.fitFunc(self.X[i, :])
                # Update the gBest_score and gBest_X
                if fitness <= self.gBest_score:
                    self.gBest_score = fitness
                    self.gBest_X = self.X[i, :].copy()
            print('self.gBest_score: ', self.gBest_score)
            print('self.gBest_X: ', self.gBest_X)
            a = 2 * (self.max_iter - t) / self.max_iter
            # Update the location of whales
            for i in range(self.whale_num):
                p = np.random.uniform()
                R1 = np.random.uniform()
                R2 = np.random.uniform()
                A = 2 * a * R1 - a
                C = 2 * R2
                l = 2 * np.random.uniform() - 1
                # 如果隨機(jī)值大于0.5 就按以下算法更新X
                if p >= 0.5:
                    D = abs(self.gBest_X - self.X[i, :])
                    self.X[i, :] = D * np.exp(self.b * l) * np.cos(2 * np.pi * l) + self.gBest_X
                else:
                    # 如果隨機(jī)值小于0.5 就按以下算法更新X
                    if abs(A) < 1:
                        D = abs(C * self.gBest_X - self.X[i, :])
                        self.X[i, :] = self.gBest_X - A * D
                    else:
                        rand_index = np.random.randint(low=0, high=self.whale_num)
                        X_rand = self.X[rand_index, :]
                        D = abs(C * X_rand - self.X[i, :])
                        self.X[i, :] = X_rand - A * D
            self.gBest_curve[t] = self.gBest_score
            t += 1
        return self.gBest_curve, self.gBest_X


if __name__ == '__main__':
    '''
    神經(jīng)網(wǎng)絡(luò)第一層神經(jīng)元個(gè)數(shù)
    神經(jīng)網(wǎng)絡(luò)第二層神經(jīng)元個(gè)數(shù)
    dropout比率
    batch_size
    '''

    # ===========主程序================
    Max_iter = 3  # 迭代次數(shù)
    dim = 4  # 鯨魚的維度
    SearchAgents_no = 2  # 尋值的鯨魚的數(shù)量
    # 參數(shù)的上限
    UB = np.array([20, 100, 0.01, 36])
    # 參數(shù)的下限
    LB = np.array([5, 20, 0.00001, 5])
    # best_params is [2.e+02 3.e+02 1.e-03 1.e+00]
    fitnessCurve, para = woa(LB, UB, dim=dim, whale_num=SearchAgents_no, max_iter=Max_iter).opt()
    print('best_params is ', para)

    # 訓(xùn)練模型  使用PSO找到的最好的神經(jīng)元個(gè)數(shù)
    neurons1 = int(para[0])
    neurons2 = int(para[1])
    dropout = para[2]
    batch_size = int(para[3])
    model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)
    history = model.fit(X_train, y_train, epochs=100, batch_size=batch_size, validation_split=0.2, verbose=1,
                        callbacks=[EarlyStopping(monitor='val_loss', patience=29, restore_best_weights=True)])
    trainPredict = model.predict(trainX)
    testPredict = model.predict(testX)
    trainPredict = scaler.inverse_transform(trainPredict)
    trainY = scaler.inverse_transform(trainY)
    testPredict = scaler.inverse_transform(testPredict)
    testY = scaler.inverse_transform(testY)

    trainScore = math.sqrt(mean_squared_error(trainY, trainPredict[:, 0]))
    # print('Train Score %.2f RMSE' %(trainScore))
    testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
    # print('Test Score %.2f RMSE' %(trainScore))

    trainPredictPlot = np.empty_like(dataset)
    trainPredictPlot[:] = np.nan
    trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
    trainPredictPlot[look_back: len(trainPredict) + look_back, :] = trainPredict

    testPredictPlot = np.empty_like(dataset)
    testPredictPlot[:] = np.nan
    testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
    testPredictPlot[len(trainPredict) + (look_back * 2) + 1: len(dataset) - 1, :] = testPredict

    plt.plot(history.history['loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.show()

    fig2 = plt.figure(figsize=(20, 15))
    plt.rcParams['font.family'] = ['STFangsong']
    ax = plt.subplot(222)
    plt.plot(scaler.inverse_transform(dataset), 'b-', label='實(shí)驗(yàn)數(shù)據(jù)')
    plt.plot(trainPredictPlot, 'r', label='訓(xùn)練數(shù)據(jù)')
    plt.plot(testPredictPlot, 'g', label='預(yù)測(cè)數(shù)據(jù)')
    plt.plot(z, 'k-', label='壽命閥值RUL')
    plt.ylabel('capacity', fontsize=20)
    plt.xlabel('cycle', fontsize=20)
    plt.legend()
    name = 'neurons1_' + str(neurons1) + 'neurons2_' + str(neurons2) + '_dropout' + str(
        dropout) + '_batch_size' + str(batch_size)
    plt.savefig('D:\項(xiàng)目\PSO-LSTM\具體需求\photo\\' + name + '.png')
    plt.show()

到了這里,關(guān)于鯨魚算法優(yōu)化LSTM超參數(shù)-神經(jīng)元個(gè)數(shù)-dropout-batch_size的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包