前言
Yolov5是單階段目標(biāo)檢測(cè)算法的一種,網(wǎng)上有很多改進(jìn)其性能的方法,添加ASFF模塊就是其中一種,但是ASFF本身是用于Yolov3的,在v5中無(wú)法直接應(yīng)用,且網(wǎng)上許多博客都是介紹這個(gè)模塊的原理,沒(méi)有直接可以應(yīng)用的代碼程序,我這里提供一種方案,如果有什么錯(cuò)誤或理解不到位的地方,歡迎評(píng)論區(qū)指正。
一、ASFF來(lái)源及功能
ASFF:Adaptively Spatial Feature Fusion (自適應(yīng)空間特征融合)
論文來(lái)源:Learning Spatial Fusion for Single-Shot Object Detection
代碼地址:ASFF
關(guān)于ASFF的功能,在網(wǎng)絡(luò)中所起到的作用,網(wǎng)上已有許多博客,這里不再多說(shuō),可以參考以下幾位博主的博文:
- 叫我西瓜超人
- 藍(lán)翔技校的碼農(nóng)
- Bruce_0712
個(gè)人的理解,ASFF就是對(duì)特征圖金字塔的每一張圖片進(jìn)行卷積、池化等處理提取權(quán)重,然后在作用在某一層上,試圖利用另外兩層的信息來(lái)改善指定層次的特征提取能力。
但是在作者實(shí)驗(yàn)后發(fā)現(xiàn),加入ASFF模塊后,mAP值僅僅從原始網(wǎng)絡(luò)的92.8%提高到93.8%。然而網(wǎng)絡(luò)的參數(shù)量卻翻了一倍達(dá)到1200萬(wàn)+,訓(xùn)練時(shí)的顯存消耗、訓(xùn)練時(shí)間也多了不少,感覺(jué)有點(diǎn)得不償失??。
提示:下面給出我所用的ASFF代碼以及如何在Yolov5/6.0中使用
二、ASFF代碼
這里的代碼我結(jié)合yolov5的網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行過(guò)修改,所以會(huì)與原代碼不同.
第一步,在models/common.py文件最下面添加下面的代碼:
def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
"""
Add a conv2d / batchnorm / leaky ReLU block.
Args:
in_ch (int): number of input channels of the convolution layer.
out_ch (int): number of output channels of the convolution layer.
ksize (int): kernel size of the convolution layer.
stride (int): stride of the convolution layer.
Returns:
stage (Sequential) : Sequential layers composing a convolution block.
"""
stage = nn.Sequential()
pad = (ksize - 1) // 2
stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
out_channels=out_ch, kernel_size=ksize, stride=stride,
padding=pad, bias=False))
stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
if leaky:
stage.add_module('leaky', nn.LeakyReLU(0.1))
else:
stage.add_module('relu6', nn.ReLU6(inplace=True))
return stage
class ASFF(nn.Module):
def __init__(self, level, rfb=False, vis=False):
super(ASFF, self).__init__()
self.level = level
# 特征金字塔從上到下三層的channel數(shù)
# 對(duì)應(yīng)特征圖大小(以640*640輸入為例)分別為20*20, 40*40, 80*80
self.dim = [512, 256, 128]
self.inter_dim = self.dim[self.level]
if level==0: # 特征圖最小的一層,channel數(shù)512
self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2)
self.expand = add_conv(self.inter_dim, 512, 3, 1)
elif level==1: # 特征圖大小適中的一層,channel數(shù)256
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2)
self.expand = add_conv(self.inter_dim, 256, 3, 1)
elif level==2: # 特征圖最大的一層,channel數(shù)128
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
self.compress_level_1 = add_conv(256, self.inter_dim, 1, 1)
self.expand = add_conv(self.inter_dim, 128, 3, 1)
compress_c = 8 if rfb else 16 #when adding rfb, we use half number of channels to save memory
self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0)
self.vis= vis
def forward(self, x_level_0, x_level_1, x_level_2):
if self.level==0:
level_0_resized = x_level_0
level_1_resized = self.stride_level_1(x_level_1)
level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1)
level_2_resized = self.stride_level_2(level_2_downsampled_inter)
elif self.level==1:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')
level_1_resized =x_level_1
level_2_resized =self.stride_level_2(x_level_2)
elif self.level==2:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')
level_1_compressed = self.compress_level_1(x_level_1)
level_1_resized =F.interpolate(level_1_compressed, scale_factor=2, mode='nearest')
level_2_resized =x_level_2
level_0_weight_v = self.weight_level_0(level_0_resized)
level_1_weight_v = self.weight_level_1(level_1_resized)
level_2_weight_v = self.weight_level_2(level_2_resized)
levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1)
levels_weight = self.weight_levels(levels_weight_v)
levels_weight = F.softmax(levels_weight, dim=1)
fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
level_1_resized * levels_weight[:,1:2,:,:]+\
level_2_resized * levels_weight[:,2:,:,:]
out = self.expand(fused_out_reduced)
if self.vis:
return out, levels_weight, fused_out_reduced.sum(dim=1)
else:
return out
二、ASFF融合Yolov5網(wǎng)絡(luò)
第二步,在models/yolo.py文件的Detect類(lèi)下面添加下面的類(lèi)(我的是在92行加的)
class ASFF_Detect(Detect):
# ASFF model for improvement
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__(nc, anchors, ch, inplace)
self.nl = len(anchors)
self.asffs = nn.ModuleList(ASFF(i) for i in range(self.nl))
self.detect = Detect.forward
def forward(self, x): # x中的特征圖從大到小,與ASFF中順序相反,因此輸入前先反向
x = x[::-1]
for i in range(self.nl):
x[i] = self.asffs[i](*x)
return self.detect(self, x[::-1])
第三步,在有yolo.py這個(gè)文件中,出現(xiàn) Detect, Segment
這個(gè)代碼片段的地方加入ASFF_Detect
,例如我的177行中改動(dòng)后變成:
一共會(huì)改三處類(lèi)似的地方,我的分別是177,211,353行。
三、構(gòu)建使用ASFF的網(wǎng)絡(luò)
第四步,在models文件夾下新創(chuàng)建一個(gè)文件,命名為yolov5s-ASFF.yaml,然后把下面的內(nèi)容粘貼上去:
# YOLOv5 ?? by Ultralytics, GPL-3.0 license
# Parameters
nc: 2 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, ASFF_Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
四、查看效果
第五步,在終端中輸入命令:python models/yolo.py --cfg=yolov5s-ASFF.yaml
運(yùn)行后可以看到我們修改后的模型就被打印出來(lái)了:
后續(xù)訓(xùn)練也是按照原模型的流程進(jìn)行。
如果覺(jué)得本文對(duì)你有幫助,不妨動(dòng)動(dòng)小手點(diǎn)個(gè)贊,你的三連是作者更新的最大動(dòng)力????文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-400724.html
最后添加一下本文代碼的倉(cāng)庫(kù)地址(可能有些許差異):https://gitee.com/inavacuum/yolov5_modified文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-400724.html
到了這里,關(guān)于【Yolov5】Yolov5添加ASFF, 網(wǎng)絡(luò)改進(jìn)優(yōu)化的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!